scholarly journals Coexistence for a kind of stochastic three-species competitive models

2019 ◽  
Vol 17 (1) ◽  
pp. 1203-1219
Author(s):  
Nantian Huang ◽  
Jiabing Huang ◽  
Yuming Wei ◽  
Yongjian Liu

Abstract The coexistence of species sustains the ecological balance in nature. This paper focuses on sufficient conditions for the coexistence of a three-species stochastic competitive model, where the model has non-linear diffusion parts. Three values λ3z, λ3x and λ3y are introduced and calculated from the coefficients, which can be considered as threshold values. Moreover, convergence in distribution of the positive solution of the model is also addressed. A few numerical simulations are carried out to illustrate the theoretical results.

Author(s):  
Hao Peng ◽  
Xinhong Zhang ◽  
Daqing Jiang

In this paper, we analyze a stochastic rabies epidemic model which is perturbed by both white noise and telegraph noise. First, we prove the existence of the unique global positive solution. Second, by constructing an appropriate Lyapunov function, we establish a sufficient condition for the existence of a unique ergodic stationary distribution of the positive solutions to the model. Then we establish sufficient conditions for the extinction of diseases. Finally, numerical simulations are introduced to illustrate our theoretical results.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 745 ◽  
Author(s):  
Tongqian Zhang ◽  
Tingting Ding ◽  
Ning Gao ◽  
Yi Song

In this paper, a stochastic SIRC epidemic model for Influenza A is proposed and investigated. First, we prove that the system exists a unique global positive solution. Second, the extinction of the disease is explored and the sufficient conditions for extinction of the disease are derived. And then the existence of a unique ergodic stationary distribution of the positive solutions for the system is discussed by constructing stochastic Lyapunov function. Furthermore, numerical simulations are employed to illustrate the theoretical results. Finally, we give some further discussions about the system.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Taolin Zhang ◽  
Yuanfu Shao ◽  
Xiaowan She

In this paper, a stochastic competitive model with distributed time delays and Lévy jumps is formulated. With or without a polluted environment, the model is denoted by (M) or (M0), respectively. The existence of positive solution, persistence in mean, and extinction of species for (M) and (M0) are both studied. The sufficient criteria of stability in distribution for model (M) is obtained. Finally, some numerical simulations are given to illustrate our theoretical results.


Author(s):  
Jiandong Zhao ◽  
Tonghua Zhang ◽  
Zhixia Han

AbstractTo study the effect of environmental noise on the spread of the disease, a stochastic Susceptible, Infective, Removed and Susceptible (SIRS) model with two viruses is introduced in this paper. Sufficient conditions for global existence of positive solution and stochastically asymptotic stability of disease-free equilibrium in the model are given. Then, it is shown that the positive solution is stochastically ultimately bounded and the moment average in time of the positive solution is bounded. Our results mean that the environmental noise suppresses the growth rate of the individuals and drives the disease to extinction under certain conditions. Finally, numerical simulations are given to illustrate our main results.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250092 ◽  
Author(s):  
LINNING QIAN ◽  
QISHAO LU ◽  
JIARU BAI ◽  
ZHAOSHENG FENG

In this paper, we study the dynamical behavior of a prey-dependent digestive model with a state-dependent impulsive effect. Using the Poincaré map and the Lambert W-function, we find the analytical expression of discrete mapping. Sufficient conditions are established for transcritical bifurcation and period-doubling bifurcation through an analytical method. Exact locations of these bifurcations are explored. Numerical simulations of an example are illustrated which agree well with our theoretical results.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850075
Author(s):  
Yongxin Gao ◽  
Shiquan Tian

This paper is concerned with a three-species competitive model with both white noises and Lévy noises. We first carry out the almost complete parameters analysis for the model and establish the critical value between persistence in the mean and extinction for each species. The sufficient criteria for stability in distribution of solutions are obtained. Finally, numerical simulations are carried out to verify the theoretical results.


Author(s):  
Jing Fu ◽  
Qixing Han ◽  
Daqing Jiang ◽  
Yanyan Yang

This paper discusses the dynamics of a Gilpin–Ayala competition model of two interacting species perturbed by white noise. We obtain the existence of a unique global positive solution of the system and the solution is bounded in [Formula: see text]th moment. Then, we establish sufficient and necessary conditions for persistence and the existence of an ergodic stationary distribution of the model. We also establish sufficient conditions for extinction of the model. Moreover, numerical simulations are carried out for further support of present research.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Junmei Liu ◽  
Yonggang Ma

This paper discusses the asymptotic behavior of a class of three-species stochastic model with regime switching. Using the Lyapunov function, we first obtain sufficient conditions for extinction and average time persistence. Then, we prove sufficient conditions for the existence of stationary distributions of populations, and they are ergodic. Numerical simulations are carried out to support our theoretical results.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Lin-Fei Nie ◽  
Zhi-Dong Teng ◽  
Juan J. Nieto ◽  
Il Hyo Jung

The dynamic behavior of a two-language competitive model is analyzed systemically in this paper. By the linearization and the Bendixson-Dulac theorem on dynamical system, some sufficient conditions on the globally asymptotical stability of the trivial equilibria and the existence and the stability of the positive equilibrium of this model are presented. Nextly, in order to protect the endangered language, an optimal control problem relative to this model is explored. We derive some necessary conditions to solve the optimal control problem and present some numerical simulations using a Runge-Kutta fourth-order method. Finally, the languages competitive model is extended to this model assessing the impact of state-dependent pulse control strategy. Using the Poincaré map, differential inequality, and method of qualitative analysis, we prove the existence and stability of positive order-1 periodic solution for this control model. Numerical simulations are carried out to illustrate the main results and the feasibility of state-dependent impulsive control strategy.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Yu Mu ◽  
Zuxiong Li ◽  
Huili Xiang ◽  
Hailing Wang

A stochastic turbidostat system in which the dilution rate is subject to white noise is investigated in this paper. First of all, sufficient conditions of the competitive exclusion among microorganisms are obtained by employing the techniques of stochastic analysis. Furthermore, the results demonstrate that the competition among microorganisms and stochastic disturbance will affect the dynamical behaviors of microorganisms. Finally, the theoretical results obtained in this contribution are illustrated by numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document