scholarly journals Dynamical Behavior of a Stochastic SIRC Model for Influenza A

Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 745 ◽  
Author(s):  
Tongqian Zhang ◽  
Tingting Ding ◽  
Ning Gao ◽  
Yi Song

In this paper, a stochastic SIRC epidemic model for Influenza A is proposed and investigated. First, we prove that the system exists a unique global positive solution. Second, the extinction of the disease is explored and the sufficient conditions for extinction of the disease are derived. And then the existence of a unique ergodic stationary distribution of the positive solutions for the system is discussed by constructing stochastic Lyapunov function. Furthermore, numerical simulations are employed to illustrate the theoretical results. Finally, we give some further discussions about the system.

Author(s):  
Hao Peng ◽  
Xinhong Zhang ◽  
Daqing Jiang

In this paper, we analyze a stochastic rabies epidemic model which is perturbed by both white noise and telegraph noise. First, we prove the existence of the unique global positive solution. Second, by constructing an appropriate Lyapunov function, we establish a sufficient condition for the existence of a unique ergodic stationary distribution of the positive solutions to the model. Then we establish sufficient conditions for the extinction of diseases. Finally, numerical simulations are introduced to illustrate our theoretical results.


Author(s):  
Khadija Akdim ◽  
Adil Ez-Zetouni ◽  
Mehdi Zahid

In this paper, we investigate a stochastic vaccinated epidemic model with a general awareness-induced incidence perturbed by Lévy noise. First, we show that this model has a unique global positive solution. Therefore, we establish the dynamic behavior of the solution around both disease-free and endemic equilibrium points. Furthermore, when [Formula: see text], we give sufficient conditions for the existence of an ergodic stationary distribution to the model when the jump part in the Lévy noise is null. Finally, we present some examples to illustrate the analytical results by numerical simulations.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Guirong Liu ◽  
Rong Liu

This paper is concerned with a stochastic three-species food web model with omnivory which is defined as feeding on more than one trophic level. The model involves a prey, an intermediate predator, and an omnivorous top predator. First, by the stochastic comparison theorem, we show that there is a unique global positive solution to the model. Next, we investigate the asymptotic pathwise behavior of the model. Then, we conclude that the model is persistent in mean and extinct and discuss the stochastic persistence of the model. Further, by constructing a suitable Lyapunov function, we establish sufficient conditions for the existence of an ergodic stationary distribution to the model. Then, we present the application of the main results in some special models. Finally, we introduce some numerical simulations to support the main results obtained. The results in this paper generalize and improve the previous related results.


Filomat ◽  
2018 ◽  
Vol 32 (15) ◽  
pp. 5239-5253 ◽  
Author(s):  
Li-Li Wang ◽  
Nan-Jing Huang ◽  
Donal O’Regan

The purpose of this paper is to propose and investigate a stochastic SIQR epidemic model with saturated incidence rate. Firstly, we give some conditions to guarantee the stochastic SIQR epidemic model has a unique global positive solution. Then we verify that the disease in this model will die out exponentially if Rs 0 < 1, while the disease will be persistent in the mean if Rs 0 > 1. Moreover, by constructing suitable Lyapunov functions, we establish some sufficient conditions for the existence of an ergodic stationary distribution for the model. Finally, we provide some numerical simulations to illustrate the analytical results.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250092 ◽  
Author(s):  
LINNING QIAN ◽  
QISHAO LU ◽  
JIARU BAI ◽  
ZHAOSHENG FENG

In this paper, we study the dynamical behavior of a prey-dependent digestive model with a state-dependent impulsive effect. Using the Poincaré map and the Lambert W-function, we find the analytical expression of discrete mapping. Sufficient conditions are established for transcritical bifurcation and period-doubling bifurcation through an analytical method. Exact locations of these bifurcations are explored. Numerical simulations of an example are illustrated which agree well with our theoretical results.


Author(s):  
Jing Fu ◽  
Qixing Han ◽  
Daqing Jiang ◽  
Yanyan Yang

This paper discusses the dynamics of a Gilpin–Ayala competition model of two interacting species perturbed by white noise. We obtain the existence of a unique global positive solution of the system and the solution is bounded in [Formula: see text]th moment. Then, we establish sufficient and necessary conditions for persistence and the existence of an ergodic stationary distribution of the model. We also establish sufficient conditions for extinction of the model. Moreover, numerical simulations are carried out for further support of present research.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Junmei Liu ◽  
Yonggang Ma

This paper discusses the asymptotic behavior of a class of three-species stochastic model with regime switching. Using the Lyapunov function, we first obtain sufficient conditions for extinction and average time persistence. Then, we prove sufficient conditions for the existence of stationary distributions of populations, and they are ergodic. Numerical simulations are carried out to support our theoretical results.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 396 ◽  
Author(s):  
Zizhen Zhang ◽  
Soumen Kundu ◽  
Ruibin Wei

In this paper, we investigate a delayed SEIQRS-V epidemic model for propagation of malicious codes in a wireless sensor network. The communication radius and distributed density of nodes is considered in the proposed model. With this model, first we find a feasible region which is invariant and where the solutions of our model are positive. To show that the system is locally asymptotically stable, a Lyapunov function is constructed. After that, sufficient conditions for local stability and existence of Hopf bifurcation are derived by analyzing the distribution of the roots of the corresponding characteristic equation. Finally, numerical simulations are presented to verify the obtained theoretical results and to analyze the effects of some parameters on the dynamical behavior of the proposed model in the paper.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1122
Author(s):  
Yanlin Ding ◽  
Jianjun Jiao ◽  
Qianhong Zhang ◽  
Yongxin Zhang ◽  
Xinzhi Ren

This paper is concerned with the dynamic characteristics of the SIQR model with media coverage and regime switching. Firstly, the existence of the unique positive solution of the proposed system is investigated. Secondly, by constructing a suitable random Lyapunov function, some sufficient conditions for the existence of a stationary distribution is obtained. Meanwhile, the conditions for extinction is also given. Finally, some numerical simulation examples are carried out to demonstrate the effectiveness of theoretical results.


Author(s):  
Jiang Xu ◽  
Yinong Wang ◽  
Zhongwei Cao

The goal of this paper is to introduce and initiate a study of a stochastic SIRS epidemic model with standard incidence which is perturbed by both white and telegraph noises. We first show persistence in the mean and then establish the sufficient conditions for extinction of the disease. Moreover, in the case of persistence, we obtain sufficient conditions for the existence of positive recurrence of the solutions by means of structuring suitable stochastic Lyapunov function with regime switching. Meanwhile, the threshold between persistence in the mean and extinction of the stochastic system is also obtained. Finally, we test our theory conclusion by simulations.


Sign in / Sign up

Export Citation Format

Share Document