scholarly journals Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

2016 ◽  
Vol 16 (4) ◽  
pp. 218-227 ◽  
Author(s):  
Weihang Kong ◽  
Lei Li ◽  
Lingfu Kong ◽  
Xingbin Liu

Abstract In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1352 ◽  
Author(s):  
Weihang Kong ◽  
Lingfu Kong ◽  
Lei Li ◽  
Xingbin Liu ◽  
Ronghua Xie ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Wang ◽  
Wei Cheng ◽  
Kai Li ◽  
Chen Lou ◽  
Jing Gong

A systematic work on the prediction of flow patterns transition of the oil-water two-phase flows is carried out under a wide range of oil phase viscosities, where four main flow regimes are considered including stratified, dispersed, core-annular, and intermittent flow. For oil with a relatively low viscosity, VKH criterion is considered for the stability of stratified flow, and critical drop size model is distinguished for the transition of o/w and w/o dispersed flow. For oil with a high viscousity, boundaries of core-annular flow are based on criteria proposed by Bannwart and Strazza et al. and neutral stability law ignoring that the velocity of the viscous phase is introduced for stratified flow. Comparisons between predictions and quantities of available data in both low and high viscosity oil-water flow from literatures show a good agreement. The framework provides extensive information about flow patterns transition of oil-water two-phase flow for industrial application.


2016 ◽  
Vol 27 (11) ◽  
pp. 115101 ◽  
Author(s):  
Lijun Xu ◽  
Wen Zhang ◽  
Zhang Cao ◽  
Jiayu Zhao ◽  
Ronghua Xie ◽  
...  

2018 ◽  
Vol 74 (1) ◽  
pp. 25-41 ◽  
Author(s):  
Yuansheng He ◽  
Yingyu Ren ◽  
Yunfeng Han ◽  
Ningde Jin

AbstractThe present study is a report on the asymmetry of dispersed oil phase in vertical upward oil-water two phase flow. The multi-channel signals of the rotating electric field conductance sensor with eight electrodes are collected in a 20-mm inner diameter pipe, and typical images of low pattern are captured using a high speed camera. With the multi-channel rotating electric field conductance signals collected at pipe cross section, multi-scale time asymmetry (MSA) and an algorithm of multi-scale first-order difference scatter plot are employed to uncover the fluid dynamics of oil-water two phase flow. The results indicate that MSA can characterise the non-linear behaviours of oil-water two phase flow. Besides, the MSA analysis also beneficial for understanding the underlying inhomogeneous distribution of the flow pattern in different directions at pipe cross section.


Measurement ◽  
2014 ◽  
Vol 49 ◽  
pp. 153-163 ◽  
Author(s):  
Zhao An ◽  
Jin Ningde ◽  
Zhai Lusheng ◽  
Gao Zhongke

Sign in / Sign up

Export Citation Format

Share Document