SERS-based detection of biomolecules

Nanophotonics ◽  
2014 ◽  
Vol 3 (6) ◽  
pp. 383-411 ◽  
Author(s):  
Dana Cialla ◽  
Sibyll Pollok ◽  
Carolin Steinbrücker ◽  
Karina Weber ◽  
Jürgen Popp

AbstractIn order to detect biomolecules, different approaches using for instance biological, spectroscopic or imaging techniques are established. Due to the broad variety of these methods, this review is focused on surface enhanced Raman spectroscopy (SERS) as an analytical tool in biomolecule detection. Here, the molecular specificity of Raman spectroscopy is combined with metallic nanoparticles as sensor platform, which enhances the signal intensity by several orders of magnitude. Within this article, the characterization of diverse biomolecules by means of SERS is explained and moreover current application fields are presented. The SERS intensity and as a consequence thereof the reliable detection of the biomolecule of interest is effected by distance, orientation and affinity of the molecule towards the metal surface. Furthermore, the great capability of the SERS technique for cutting-edge applications like pathogen detection and cancer diagnosis is highlighted. We wish to motivate by this comprehensive and critical summary researchers from various scientific background to create their own ideas and schemes for a SERS-based detection and analysis of biomolecules.

Talanta ◽  
2014 ◽  
Vol 130 ◽  
pp. 20-25 ◽  
Author(s):  
Juanita Hughes ◽  
Emad L. Izake ◽  
William B. Lott ◽  
Godwin A. Ayoko ◽  
Martin Sillence

2020 ◽  
Author(s):  
Won-Geun Kim ◽  
Jongmin Lee ◽  
Vasanthan Devaraj ◽  
Minjun Kim ◽  
Hyuk Jeong ◽  
...  

Abstract Plasmonic nanoparticle clusters promise to support various, unique artificial electromagnetisms at optical frequencies, realizing new concept devices for diverse nanophotonic applications. However, the technological challenges associated with the fabrication of plasmonic clusters with programmed geometry and composition remain unresolved. Here, we present a freeform fabrication of hierarchical plasmonic clusters (HPCs) based on omnidirectional guiding of evaporative self-assembly of gold nanoparticles (AuNPs) with the aid of 3D printing. Our method offers a facile, universal route to shape the multiscale features of HPCs in three-dimensions, leading to versatile manipulation of both far-field and near-field characteristics. Various functional nanomaterials can be effectively coupled to plasmonic modes of the HPCs by simply mixing with AuNP ink. We demonstrate in particular an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes. This SERS microplatform could pave the way towards simple, innovative detection methods of diverse pathogens, which is in high demand for handling pandemic situations. We expect our method to freely design and realize nanophotonic structures beyond the restrictions of traditional fabrication processes. Plasmonic nanoparticle clusters have attracted great attention due to the unique capability to manipulate electromagnetic fields at the sub-wavelength scale1–5. Ensembles of metallic nanoparticles generate various electromagnetisms at optical frequencies such as artificial magnetism6–10 and Fano-like interference11–13 and a strong field localization in the structure14–16. These unique properties are geometry-dependent and lead to a broad range of applications in sensing16,17, surface-enhanced spectroscopies18–22, nonlinear integrated photonics23,24, and light harvesting25,26. Traditionally, plasmonic clusters with tailored size and geometry are fabricated on substrates by top-down processes such as electron-beam lithography4,5 or focused-ion beam milling27,28. These approaches suffer from low throughput and are generally limited to in-plane fabrication. Alternatively, the self-assembly of colloids has been proposed as a versatile, high-throughput, and cost-effective route. A number of clever methods based on chemical linking (e.g., DNA origami)29–30 and/or convective assembly on lithographically structured templates25,26,31 have been devised to construct 2D or 3D plasmonic clusters. The shape formation, however, is mostly constrained by the thermodynamic impetus and/or template geometry. A significant challenge would be overcome these restrictions and expand structural design freedom in the fabrication of plasmonic cluster architectures with symmetry-breaking geometries. In this work, we develop a freeform, programmable 3D assembly of of hierarchical plasmonic clusters (HPCs). By exploiting micronozzle 3D printing, we demonstrate highly localized, omnidirectional meniscus-guided assembly of metallic nanoparticles, constructing a freestanding HPC with a tailored geometry that can control the far-field character. Our approach also allows versatile manipulation and exploitation of the near-field interaction in the HPC by a facile heterogeneous nanoparticle mixing. We demonstrate that 3D-printed HPCs can be utilized as an ultracompact surface-enhanced Raman spectroscopy (SERS) platform to detect M13 viruses and their mutations from femtolitre volume, sub-100pM analytes.


2013 ◽  
Vol 44 (5) ◽  
pp. 723-726 ◽  
Author(s):  
Jonathan Mbah ◽  
Kiara Moorer ◽  
Leonardo Pacheco-Londoño ◽  
Samuel Hernandez-Rivera ◽  
Gabriel Cruz

2007 ◽  
Vol 61 (7) ◽  
pp. 679-685 ◽  
Author(s):  
Lindsay J. Goeller ◽  
Mark R. Riley

Detection of pathogenic organisms in the environment presents several challenges due to the high cost and long times typically required for identification and quantification. Polymerase chain reaction (PCR) based methods are often hindered by the presence of polymerase inhibiting compounds and so direct methods of quantification that do not require enrichment or amplification are being sought. This work presents an analysis of pathogen detection using Raman spectroscopy to identify and quantify microorganisms without drying. Confocal Raman measurements of the bacterium Escherichia coli and of two bacteriophages, MS2 and PRD1, were analyzed for characteristic peaks and to estimate detection limits using traditional Raman and surface-enhanced Raman spectroscopy (SERS). MS2, PRD1, and E. coli produced differentiable Raman spectra with approximate detection limits for PRD1 and E. coli of 109 pfu/mL and 106 cells/mL, respectively. These high detection concentration limits are partly due to the small sampling volume of the confocal system but translate to quantification of as little as 100 bacteriophages to generate a reliable spectral signal. SERS increased signal intensity 103 fold and presented peaks that were visible using 2-second acquisitions; however, peak locations and intensities were variable, as typical with SERS. These results demonstrate that Raman spectroscopy and SERS have potential as a pathogen monitoring platform.


The Analyst ◽  
2014 ◽  
Vol 139 (19) ◽  
pp. 4799-4805 ◽  
Author(s):  
Ying Zhou ◽  
Xuanhua Li ◽  
Xingang Ren ◽  
Liangbao Yang ◽  
Jinhuai Liu

We propose and fabricate a novel double-resonance SERS system by strategically assembling Au NPs separated by a MoO3nanospacer from an Ag grating film.


Sign in / Sign up

Export Citation Format

Share Document