scholarly journals Dressed emitters as impurities

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Luca Leonforte ◽  
Davide Valenti ◽  
Bernardo Spagnolo ◽  
Angelo Carollo ◽  
Francesco Ciccarello

Abstract Dressed states forming when quantum emitters or atoms couple to a photonic bath underpin a number of phenomena and applications, in particular nonradiating effective interactions occurring within photonic bandgaps. Here, we present a compact formulation of the resolvent-based theory for calculating atom-photon dressed states built on the idea that the atom behaves as an effective impurity. This establishes an explicit connection with the standard impurity problem in condensed matter. Moreover, it allows us to formulate and settle – independently of the bath Hamiltonian – a number of properties previously known only for specific models or not entirely formalized. The framework is next extended to the case of more than one emitter, which is used to derive a general expression of dissipationless effective Hamiltonians explicitly featuring the overlap of single-emitter dressed bound states.

1985 ◽  
Vol 40 (1) ◽  
pp. 14-28
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


2005 ◽  
Vol 14 (01) ◽  
pp. 21-28 ◽  
Author(s):  
RYOJI OKAMOTO ◽  
SHINICHIRO FUJII ◽  
KENJI SUZUKI

A general definition of the model-space effective interaction is given. The energy-independent effective Hamiltonians derived in a time-independent way are classified systematically.


1986 ◽  
Vol 41 (12) ◽  
pp. 1399-1411
Author(s):  
H. Stumpf

The model is defined by a selfregularizing nonlinear spinor-isospinor preon field equation and all observable (elementary and non-elementary) particles are assumed to be bound states o f the quantized preon field. In a series o f preceding papers this model was extensively studied. In particular for com posite electroweak bosons the Yang-Mills dynamics was derived as the effective dynamics o f these bosons. In this paper the first generation o f com posite leptons and com posite Han-Nam bu quarks is introduced and together with electroweak bosons, these particles are interpreted as “shell model” states o f the underlying preon field. The choice o f the shell model states is justified by deriving the effective fermion-boson coupling and demonstrating its equivalence with the phenom enological electroweak coupling terms o f the Weinberg-Salam model. The investigation is restricted to the left-handed parts o f the composite fermions. Color is revealed to be a hidden orbital angular momentum in the shell model and hypercharge follows from the effective coupling. The techniques o f deriving effective interactions is a “weak mapping” procedure and the calculations are done in the “low” energy limit.


2020 ◽  
Vol 125 (16) ◽  
Author(s):  
Iñaki García-Elcano ◽  
Alejandro González-Tudela ◽  
Jorge Bravo-Abad

Science ◽  
2020 ◽  
Vol 367 (6473) ◽  
pp. 104-108 ◽  
Author(s):  
Zhenyu Wang ◽  
Jorge Olivares Rodriguez ◽  
Lin Jiao ◽  
Sean Howard ◽  
Martin Graham ◽  
...  

The possible realization of Majorana fermions as quasiparticle excitations in condensed-matter physics has created much excitement. Most studies have focused on Majorana bound states; however, propagating Majorana states with linear dispersion have also been predicted. Here, we report scanning tunneling spectroscopic measurements of crystalline domain walls (DWs) in FeSe0.45Te0.55. We located DWs across which the lattice structure shifts by half a unit cell. These DWs have a finite, flat density of states inside the superconducting gap, which is a hallmark of linearly dispersing modes in one dimension. This signature is absent in DWs in the related superconductor, FeSe, which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a π-phase shift DW in a proximitized topological material.


2010 ◽  
Vol 108 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Stanley J. Brodsky ◽  
Robert Shrock

Casher and Susskind [Casher A, Susskind L (1974) Phys Rev 9:436–460] have noted that in the light-front description, spontaneous chiral symmetry breaking is a property of hadronic wavefunctions and not of the vacuum. Here we show from several physical perspectives that, because of color confinement, quark and gluon condensates in quantum chromodynamics (QCD) are associated with the internal dynamics of hadrons. We discuss condensates using condensed matter analogues, the Anti de Sitter/conformal field theory correspondence, and the Bethe–Salpeter–Dyson–Schwinger approach for bound states. Our analysis is in agreement with the Casher and Susskind model and the explicit demonstration of “in-hadron” condensates by Roberts and coworkers [Maris P, Roberts CD, Tandy PC (1998) Phys Lett B 420:267–273], using the Bethe–Salpeter–Dyson–Schwinger formalism for QCD-bound states. These results imply that QCD condensates give zero contribution to the cosmological constant, because all of the gravitational effects of the in-hadron condensates are already included in the normal contribution from hadron masses.


1985 ◽  
Vol 40 (3) ◽  
pp. 294-302
Author(s):  
H. Stumpf

Unified nonlinear spinor field models are selfregularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined. In preceding papers a functional energy representation, the statistical interpretation and the dynamic equations were derived. In this paper the dynamics of composite particles is discussed. The composite particles are defined to be eigensolutions of the diagonal part of the energy representation. Corresponding calculations are in preparation, but in the present paper a suitable composite particle spectrum is assumed. It consists of preon-antipreon boson states and threepreon- fermion states with corresponding antifermions and contains bound states as well as preon scattering states. The state functional is expanded in terms of these composite particle states with inclusion of preon scattering states. The transformation of the functional energy representation of the spinor field into composite particle functional operators produces a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. This representation is valid as long as the processes are assumed to be below the energetic threshold for preon production or preon break-up reactions, respectively. From this it can be concluded that below the threshold the effective interactions of composite particles in a unified spinor field model lead to phenomenological coupling theories which depend in their properties on the bound state spectrum of the self-regularizing spinor theory.


2019 ◽  
Vol 100 (2) ◽  
Author(s):  
Paolo Facchi ◽  
Davide Lonigro ◽  
Saverio Pascazio ◽  
Francesco V. Pepe ◽  
Domenico Pomarico

Sign in / Sign up

Export Citation Format

Share Document