soft condensed matter
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ryo Kimura ◽  
Hidetsugu Kitakado ◽  
Takuya Yamakado ◽  
Hiroyuki Yoshida ◽  
Shohei Saito

Understanding the microviscosity of soft condensed matter is important to clarify the mechanisms of chemical, physical or biological events occurring at the nanoscale. Here, we report that flapping fluorophores (FLAP)...


2021 ◽  
Vol 118 (37) ◽  
pp. e2109560118
Author(s):  
Giovanni Del Monte ◽  
Domenico Truzzolillo ◽  
Fabrizio Camerin ◽  
Andrea Ninarello ◽  
Edouard Chauveau ◽  
...  

Thermoresponsive microgels are one of the most investigated types of soft colloids, thanks to their ability to undergo a Volume Phase Transition (VPT) close to ambient temperature. However, this fundamental phenomenon still lacks a detailed microscopic understanding, particularly regarding the presence and the role of charges in the deswelling process. This is particularly important for the widely used poly(N-isopropylacrylamide)–based microgels, where the constituent monomers are neutral but charged groups arise due to the initiator molecules used in the synthesis. Here, we address this point combining experiments with state-of-the-art simulations to show that the microgel collapse does not happen in a homogeneous fashion, but through a two-step mechanism, entirely attributable to electrostatic effects. The signature of this phenomenon is the emergence of a minimum in the ratio between gyration and hydrodynamic radii at the VPT. Thanks to simulations of microgels with different cross-linker concentrations, charge contents, and charge distributions, we provide evidence that peripheral charges arising from the synthesis are responsible for this behavior and we further build a universal master curve able to predict the two-step deswelling. Our results have direct relevance on fundamental soft condensed matter science and on applications where microgels are involved, ranging from materials to biomedical technologies.


2021 ◽  
Vol 11 (17) ◽  
pp. 8037
Author(s):  
Francesco Dallari ◽  
Mario Reiser ◽  
Irina Lokteva ◽  
Avni Jain ◽  
Johannes Möller ◽  
...  

The nanometer length-scale holds precious information on several dynamical processes that develop from picoseconds to seconds. In the past decades, X-ray scattering techniques have been developed to probe the dynamics at such length-scales on either ultrafast (sub-nanosecond) or slow ((milli-)second) time scales. With the start of operation of the European XFEL, thanks to the MHz repetition rate of its X-ray pulses, even the intermediate μs range have become accessible. Measuring dynamics on such fast timescales requires the development of new technologies such as the Adaptive Gain Integrating Pixel Detector (AGIPD). μs-XPCS is a promising technique to answer many scientific questions regarding microscopic structural dynamics, especially for soft condensed matter systems. However, obtaining reliable results with complex detectors at free-electron laser facilities is challenging and requires more sophisticated analysis methods compared to experiments at storage rings. Here, we discuss challenges and possible solutions to perform XPCS experiments with the AGIPD at European XFEL; in particular, at the Materials Imaging and Dynamics (MID) instrument. We present our data analysis pipeline and benchmark the results obtained at the MID instrument with a well-known sample composed by silica nanoparticles dispersed in water.


2021 ◽  
Vol 11 (12) ◽  
pp. 5566
Author(s):  
Volker S. Urban ◽  
William T. Heller ◽  
John Katsaras ◽  
Wim Bras

With the promise of new, more powerful neutron sources in the future, the possibilities for time-resolved neutron scattering experiments will improve and are bound to gain in interest. While there is already a large body of work on the accurate control of temperature, pressure, and magnetic fields for static experiments, this field is less well developed for time-resolved experiments on soft condensed matter and biomaterials. We present here an overview of different sample environments and technique combinations that have been developed so far and which might inspire further developments so that one can take full advantage of both the existing facilities as well as the possibilities that future high intensity neutron sources will offer.


2021 ◽  
pp. 166841
Author(s):  
Andrew I. Jewett ◽  
David Stelter ◽  
Jason Lambert ◽  
Shyam M. Saladi ◽  
Otello M. Roscioni ◽  
...  

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Sriram Srinivasa Raghvan ◽  
Suresh Madhu ◽  
Velmurugan Devadasan ◽  
Gunasekaran Krishnasamy

AbstractIn this study, we present the synthesis, spectroscopic and structural characterization of self-assembling gem-dimethyl imine based molecular cage (IMC). Self-assembling macrocycles and cages have well-defined cavities and have extensive functionalities ranging from energy storage, liquid crystals, and catalysts to water splitting photo absorber. IMC has large voids i.e., 25% of the total crystal volume thus could accommodate wide substrates. The synthesized imine-based molecular cages are stabilized by coaxial π bonded networks and long-range periodic van der Waal and non-bonded contacts as observed from the crystal structure. IMC also has typical properties of soft condensed matter materials, hence theoretical prediction of stress and strain tensor along with thermophysical properties were computed on crystal system and were found to be stable. Molecular dynamics revealed IMC is stabilized by, strong interactions between the interstitial phenyl rings. Density functional theory (DFT) based physicochemical properties were evaluated and has band gap of around 2.38ev (520 nm) similar to various photocatalytic band gap materials.


Author(s):  
Renan Biagio ◽  
Rodolfo Teixeira de Souza ◽  
Luiz Roberto Evangelista ◽  
Rafael S Zola

The complex arrangement of layered structures in curved geometries is a ubiquitous problem in soft condensed matter systems. In general, cholesteric liquid crystals (CLCs) in spherical droplets have been studied...


2020 ◽  
Author(s):  
Mohamed El Ketara ◽  
Hirokazu Kobayashi ◽  
Etienne Brasselet

2020 ◽  
Vol 27 (4) ◽  
pp. 1033-1041
Author(s):  
Sungsook Ahn ◽  
Sang Joon Lee

Patterns in materials are not just decoration but also important for function. In view of this, the dynamics of patterning procedures in materials has been investigated as an important developmental procedure. In this study, nanoscale components in a continuum are traced in terms of natural patterning procedures. Externally applied compressive or extensive forces to an elastic thin sheet commonly induce an orientated lateral line pattern. From a nanoscale element point of view, the dynamics of natural arrangements, forming anisotropic patterns in preference to isotropy, still remains unclear. In this study, new developmental procedures for line patterns are suggested by stimuli-responsive viscoelastic nanocomposite network model systems. Forces originating from an internal source without directional orientation generate lines in preference to isotropic patterns. With repeated, non-oriented (or isotropic) and self-modulated strain variations, stress is accumulated to drive anisotropic orientations and further lines. The anisotropic elemental arrangement is justified by the equilibrium between the short-range attraction and long-range repulsion from a bottom-up viewpoint. This study suggests a new material design methodology that is useful for electrical devices, biomedical devices and other patterned soft condensed matter in conjunction with line patterns typically generated in a broad range of viscoelastic materials.


Sign in / Sign up

Export Citation Format

Share Document