Numerical approximation of Newell-Whitehead-Segel equation of fractional order

2016 ◽  
Vol 5 (2) ◽  
Author(s):  
Devendra Kumar ◽  
Ram Prakash Sharma

AbstractThe aim of the present work is to propose a user friendly approach based on homotopy analysis method combined with Sumudu transform method to drive analytical and numerical solutions of the fractional Newell-Whitehead-Segel amplitude equation which describes the appearance of the stripe patterns in 2-dimensional systems. The coupling of homotopy analysis method with Sumudu transform algorithm makes the calculation very easy. The proposed technique gives an analytic solution in the form of series which converge very fastly. The analytical and numerical results reveal that the coupling of homotopy analysis technique with Sumudu transform algorithm is very easy to apply and highly accuratewhen apply to non-linear differential equation of fractional order.

Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 626 ◽  
Author(s):  
Asad Mahmood ◽  
Md Md Basir ◽  
Umair Ali ◽  
Mohd Mohd Kasihmuddin ◽  
Mohd. Mansor

This paper studies heat transfer in a two-dimensional magnetohydrodynamic viscous incompressible flow in convergent/divergent channels. The temperature profile was obtained numerically for both cases of convergent/divergent channels. It was found that the temperature profile increases with an increase in Reynold number, Prandtl number, Nusselt number and angle of the wall but decreases with an increase in Hartmann number. A relatively new numerical method called the spectral homotopy analysis method (SHAM) was used to solve the governing non-linear differential equations. The SHAM 3rd order results matched with the DTM and shooting, showing that SHAM is feasible as a technique to be used.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


Mathematics ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 1167
Author(s):  
Said Mesloub ◽  
Saleem Obaidat

The main purpose of this paper is to obtain some numerical results via the homotopy analysis method for an initial-boundary value problem for a fractional order diffusion equation with a non-local constraint of integral type. Some examples are provided to illustrate the efficiency of the homotopy analysis method (HAM) in solving non-local time-fractional order initial-boundary value problems. We also give some improvements for the proof of the existence and uniqueness of the solution in a fractional Sobolev space.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dianchen Lu ◽  
Jie Liu

The homotopy analysis method is applied to solve the variable coefficient KdV-Burgers equation. With the aid of generalized elliptic method and Fourier’s transform method, the approximate solutions of double periodic form are obtained. These solutions may be degenerated into the approximate solutions of hyperbolic function form and the approximate solutions of trigonometric function form in the limit cases. The results indicate that this method is efficient for the nonlinear models with the dissipative terms and variable coefficients.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Muhammad Jamil ◽  
Asmat Ara

We construct the approximate solutions of the time-fractional Schrödinger equations, with zero and nonzero trapping potential, by homotopy analysis method (HAM). The fractional derivatives, in the Caputo sense, are used. The method is capable of reducing the size of calculations and handles nonlinear-coupled equations in a direct manner. The results show that HAM is more promising, convenient, efficient and less computational than differential transform method (DTM), and easy to apply in spaces of higher dimensions as well.


Sign in / Sign up

Export Citation Format

Share Document