Chaos Suppression in Fractional Order Permanent Magnet Synchronous Motor and PI controlled Induction motor by Extended Back stepping Control

2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

AbstractIn this paper we investigate the control of three-dimensional non-autonomous fractional-order model of a permanent magnet synchronous motor (PMSM) and PI controlled fractional order Induction motor via recursive extended back stepping control technique. A robust generalized weighted controllers are derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results.

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Karthikeyan Rajagopal ◽  
Anitha Karthikeyan ◽  
Prakash Duraisamy

AbstractIn this paper we investigate the control of three-dimensional non-autonomous fractional-order uncertain model of a permanent magnet synchronous generator (PMSG) via a adaptive control technique. We derive a dimensionless fractional order model of the PMSM from the integer order presented in the literatures. Various dynamic properties of the fractional order model like eigen values, Lyapunov exponents, bifurcation and bicoherence are investigated. The system chaotic behavior for various orders of fractional calculus are presented. An adaptive controller is derived to suppress the chaotic oscillations of the fractional order model. As the direct Lyapunov stability analysis of the robust controller is difficult for a fractional order first derivative, we have derived a new lemma to analyze the stability of the system. Numerical simulations of the proposed chaos suppression methodology are given to prove the analytical results derived through which we show that for the derived adaptive controller and the parameter update law, the origin of the system for any bounded initial conditions is asymptotically stable.


2021 ◽  
Vol 23 (1) ◽  
pp. 27-35
Author(s):  
Muhammad Ishaq ◽  
Yanbo Che ◽  
Kifayat Ullah

Matrix converter is an AC-AC direct power converter comprising of an array of bi-directional switches. It does not require an intermediate DC-link and allows sinusoidal output waveforms with varying amplitudes and frequencies. The configuration of these bi-directional switches decides the number of inputs and outputs of the matrix converter. This research uses a direct matrix converter (DMC) as a phase-changing device that can convert a three-phase AC voltage into a 5-phase AC voltage. The DMC is modulated with the model predictive control algorithm. The output of DMC is fed to a five-phase permanent magnet synchronous motor (PMSM). The model predictive current control technique for DMC is carried out by developing a mathematical model of an input filter and PM motor used as a load. The predictive control of DMC results in sinusoidal output current, and it also enables the frequency variation in the output current. This frequency variation is useful in controlling the speed of the motor connected to the load. After controlling the 5-phase motor, the switching frequency regulation is done to observe its effect on the motor's stator current waveforms. Switching frequency regulation helps to limit the unnecessary switching of DMC. We developed a MATLAB-based Simulink model to study PMSM, and detailed results are presented. The results show that switching regulation can significantly reduce the switching frequency without compromising the current waveform quality.


Sign in / Sign up

Export Citation Format

Share Document