scholarly journals Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator

2021 ◽  
Vol 10 (1) ◽  
pp. 109-131
Author(s):  
Camilo Garcia-Tenorio ◽  
Eduardo Mojica-Nava ◽  
Mihaela Sbarciog ◽  
Alain Vande Wouwer

Abstract Nonlinear biochemical systems such as the anaerobic digestion process experience the problem of the multi-stability phenomena, and thus, the dynamic spectrum of the system has several undesired equilibrium states. As a result, the selection of initial conditions and operating parameters to avoid such states is of importance. In this work, we present a data-driven approach, which relies on the generation of several system trajectories of the anaerobic digestion system and the construction of a data-driven Koopman operator to give a concise criterion for the classification of arbitrary initial conditions in the state space. Unlike other approximation methods, the criterion does not rely on difficult geometrical analysis of the identified boundaries to produce the classification.

2020 ◽  
Vol 53 (2) ◽  
pp. 16840-16845
Author(s):  
Camilo Garcia-Tenorio ◽  
Mihaela Sbarciog ◽  
Eduardo Mojica-Nava ◽  
Alain Vande Wouwer

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6746
Author(s):  
Larisa Condrachi ◽  
Ramon Vilanova ◽  
Montse Meneses ◽  
Marian Barbu

Anaerobic digestion processes offer the possibility for wastewater treatment while obtaining a benefit through the obtained biogas. This paper aims to continue the effort to adopt data-driven control methods in the case of anaerobic digestion processes. The paper proposes a data-based Internal Model Control approach applied to an anaerobic digestion process. The paper deals extensively with the issue of choosing the reference model and proposing an engineering approach to this issue. The paper also addresses the issue of verifying robust stability, a very important aspect considering the uncertainties that characterize bioprocesses in general. The approach proposed in the paper is validated through a numerical simulation using the Anaerobic Digestion Model No. 1. During the validation of the proposed control solution, the main operating conditions were analyzed, such as the setpoint tracking performance, the rejection of disturbance generated by variations in the influent concentration, and the effect of the measurement noise on the controlled variable.


2021 ◽  
Vol 146 ◽  
pp. 905-915
Author(s):  
Pezhman Kazemi ◽  
Christophe Bengoa ◽  
Jean-Philippe Steyer ◽  
Jaume Giralt

1986 ◽  
Vol 18 (7-8) ◽  
pp. 239-248 ◽  
Author(s):  
Sung Ryong Ha ◽  
Dwang Ho Lee ◽  
Sang Eun Lee

Laboratory scale experiments were conducted to develop a mathematical model for the anaerobic digestion of a mixture of night soil and septic tank sludge. The optimum mixing ratio by volume between night soil and septic tank sludge was found to be 7:3. Due to the high solids content in the influent waste, mixed-liquor volatile suspended solids (MLVSS) was not considered to be a proper parameter for biomass concentration, therefore, the active biomass concentration was estimated based on deoxyribonucleic acid (DNA) concentration in the reactor. The weight ratio between acidogenic bacteria and methanogenic bacteria in the mixed culture of a well-operated anaerobic digester was approximately 3:2. The proposed model indicates that the amount of volatile acid produced and the gas production rate can be expressed as a function of hydraulic residence time (HRT). The kinetic constants of the two phases of the anaerobic digestion process were determined, and a computer was used to simulate results using the proposed model for the various operating parameters, such as BOD5 and volatile acid concentrations in effluent, biomass concentrations and gas production rates. These were consistent with the experimental data.


Chemosphere ◽  
2021 ◽  
pp. 130449
Author(s):  
Yiwei Liu ◽  
Xiang Li ◽  
Shaohua Wu ◽  
Zhao Tan ◽  
Chunping Yang

Sign in / Sign up

Export Citation Format

Share Document