scholarly journals Assesment of advanced step models for steady state Monte Carlo burnup calculations in application to prismatic HTGR

Nukleonika ◽  
2015 ◽  
Vol 60 (3) ◽  
pp. 523-529 ◽  
Author(s):  
Grzegorz Kępisty ◽  
Jerzy Cetnar

Abstract In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5). The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR) system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.

2020 ◽  
Vol 239 ◽  
pp. 22006
Author(s):  
Donny Hartanto ◽  
Bassam Khuwaileh ◽  
Peng Hong Liem

This paper presents the benchmark evaluation of the new ENDF/B-VIII.0 nuclear library for the OECD/NEA Medium 1000 MWth Sodium-cooled Fast Reactor (SFR). There are 2 SFR cores: metallic fueled (MET-1000) and oxide fueled (MOX-1000). The continuous-energy Monte Carlo Serpent2 code was used as the calculation tool. Various nuclear libraries such as ENDF/B-VII.1 and JENDL-4.0 were included to be compared with the newest ENDF/B-VIII.0. The evaluated parameters are k,βeff, sodium void reactivity (∆ρNa), Doppler constant (∆ρDoppler), and control rod worth (∆ρCR).


2021 ◽  
Vol 2 (2) ◽  
pp. 132-151
Author(s):  
Vito Vitali ◽  
Florent Chevallier ◽  
Alexis Jinaphanh ◽  
Andrea Zoia ◽  
Patrick Blaise

Modal expansions based on k-eigenvalues and α-eigenvalues are commonly used in order to investigate the reactor behaviour, each with a distinct point of view: the former is related to fission generations, whereas the latter is related to time. Well-known Monte Carlo methods exist to compute the direct k or α fundamental eigenmodes, based on variants of the power iteration. The possibility of computing adjoint eigenfunctions in continuous-energy transport has been recently implemented and tested in the development version of TRIPOLI-4®, using a modified version of the Iterated Fission Probability (IFP) method for the adjoint α calculation. In this work we present a preliminary comparison of direct and adjoint k and α eigenmodes by Monte Carlo methods, for small deviations from criticality. When the reactor is exactly critical, i.e., for k0 = 1 or equivalently α0 = 0, the fundamental modes of both eigenfunction bases coincide, as expected on physical grounds. However, for non-critical systems the fundamental k and α eigenmodes show significant discrepancies.


Author(s):  
Bo Li ◽  
Xiaoting Rui ◽  
Guoping Wang ◽  
Jianshu Zhang ◽  
Qinbo Zhou

Dynamics analysis is currently a key technique to fully understand the dynamic characteristics of sophisticated mechanical systems because it is a prerequisite for dynamic design and control studies. In this study, a dynamics analysis problem for a multiple launch rocket system (MLRS) is developed. We particularly focus on the deductions of equations governing the motion of the MLRS without rockets by using a transfer matrix method for multibody systems and the motion of rockets via the Newton–Euler method. By combining the two equations, the differential equations of the MLRS are obtained. The complete process of the rockets’ ignition, movement in the barrels, airborne flight, and landing is numerically simulated via the Monte Carlo stochastic method. An experiment is implemented to validate the proposed model and the corresponding numerical results.


2021 ◽  
Vol 154 (21) ◽  
pp. 214110
Author(s):  
Tyler A. Anderson ◽  
C. J. Umrigar

Sign in / Sign up

Export Citation Format

Share Document