Development of an adaptive neuro-fuzzy inference system (ANFIS) model to predict sea surface temperature (SST)

2020 ◽  
Vol 49 (4) ◽  
pp. 354-373
Author(s):  
Semih Kale

Abstract An accurate estimation of the sea surface temperature (SST) is of great importance. Therefore, the objective of this work was to develop an adaptive neuro-fuzzy inference system (ANFIS) model to predict SST in the Çanakkale Strait. The observed monthly air temperature, evaporation and precipitation data from the Çanakkale meteorological observation station were used as input data. The Takagi–Sugeno fuzzy inference system was applied. The grid partition method (ANFIS-GP) and the subtractive clustering partitioning method (ANFIS-SC) were used with Gaussian membership functions to generate the fuzzy inference system. Six performance evaluation criteria were used to evaluate the developed SST prediction models, including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), Nash-Sutcliffe efficiency (NSE) and correlation of determination (R2). The dataset was randomly divided into training and testing datasets for the machine learning process. Training data accounted for 75% of the dataset, while 25% of the dataset was allocated for testing in ANFIS. The hybrid algorithm was selected as a training algorithm for the ANFIS. Simulation results revealed that the ANFIS-SC4 model provided a higher correlation coefficient of 0.96 between the observed and predicted SST values. The results of this study suggest that the developed ANFIS model can be applied for predicting sea surface temperature around the world.

Konstruksia ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 127
Author(s):  
Novia Hilda Silviani ◽  
Buan Anshari ◽  
Ngudiyono Ngudiyono

Defleksi merupakan parameter penting untuk mengontrol elemen struktur balok elemen pada kondisi layan. Beberapa cara untuk menghitung defleksi diantaranya dengan metode matematis seperti luas momen, balok konjugasi, Castigliano's, prinsip kerja virtual dan metode numerik seperti metode beda hingga, elemen hingga dan lain lain. Dalam naskah ini, telah dibangun model Adaptive Neuro Fuzzy Inference System (ANFIS), untuk memprediksi defleksi balok kayu tumpuan sederhana dengan beban terdistribusi merata. Data proses pembelajaran terdiri dari input dan output (target). Input pada penelitian ini meliputi modulus elastisitas (E), lebar (b), tinggi (h), bentang (L) dan beban terdistribusi merata (W) sedangkan output adalah defleksi balok. Hasil analisis menunjukkan bahwa model ANFIS mempunyai tingkat akurasi yang baik, jika dibandingkan dengan teori dimana koefisien korelasi (R2) untuk data pengujian 0.995 dan Mean Square Error (MSE) 0.13 mm. Hal ini menunjukkan bahwa model ANFIS yang dibangun dapat diandalkan untuk memprediksi lendutan balok kayu tumpuan sederhana.


2013 ◽  
Vol 8 (4) ◽  
pp. 155892501300800 ◽  
Author(s):  
A.R. Fallahpour ◽  
A.R. Moghassem

This study compares capabilities of two different modelling methodologies for predicting breaking strength of rotor spun yarns. Forty eight yarn samples were produced considering variations in three drawing frame parameters namely break draft, delivery speed, and distance between back and middle rolls. Several topologies with different architectures were trained to get the best adaptive neuro-fuzzy inference system (ANFIS) and gene expression programming (GEP) models. Prediction performance of the GEP model was compared with that of ANFIS using root mean square error (RMSE) and correlation coefficient (R2-Value) parameters on the test data. Results show that, the GEP model has a significant priority over the ANFIS model in term of prediction accuracy. The correlation coefficient (R2-value) and root mean square error for the GEP model were 0.87 and 0.35 respectively, while these parameters were 0.48 and 0.53 for the ANFIS model. Also, a mathematical formula was developed with high degree of accuracy using GEP algorithm to predict the breaking strength of the yarns. This advantage is not accessible in the ANFIS model.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Ye ◽  
Yi Xia ◽  
Zhiming Yao

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD) and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2771 ◽  
Author(s):  
Abbas Mardani ◽  
Dalia Streimikiene ◽  
Mehrbakhsh Nilashi ◽  
Daniel Arias Aranda ◽  
Nanthakumar Loganathan ◽  
...  

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.


2019 ◽  
Vol 9 (4) ◽  
pp. 780 ◽  
Author(s):  
Khalid Elbaz ◽  
Shui-Long Shen ◽  
Annan Zhou ◽  
Da-Jun Yuan ◽  
Ye-Shuang Xu

The prediction of earth pressure balance (EPB) shield performance is an essential part of project scheduling and cost estimation of tunneling projects. This paper establishes an efficient multi-objective optimization model to predict the shield performance during the tunneling process. This model integrates the adaptive neuro-fuzzy inference system (ANFIS) with the genetic algorithm (GA). The hybrid model uses shield operational parameters as inputs and computes the advance rate as output. GA enhances the accuracy of ANFIS for runtime parameters tuning by multi-objective fitness function. Prior to modeling, datasets were established, and critical operating parameters were identified through principal component analysis. Then, the tunneling case for Guangzhou metro line number 9 was adopted to verify the applicability of the proposed model. Results were then compared with those of the ANFIS model. The comparison showed that the multi-objective ANFIS-GA model is more successful than the ANFIS model in predicting the advance rate with a high accuracy, which can be used to guide the tunnel performance in the field.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 211
Author(s):  
Aamer Bilal Asghar ◽  
Saad Farooq ◽  
Muhammad Shahzad Khurram ◽  
Mujtaba Hussain Jaffery ◽  
Krzysztof Ejsmont

Circulating Fluidized Bed gasifiers are widely used in industry to convert solid fuel into liquid fuel. The Artificial Neural Network and neuro-fuzzy algorithm have immense potential to improve the efficiency of the gasifier. The main focus of this article is to implement the Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System modeling approach to estimate solid circulation rate at high pressure in the Circulating Fluidized Bed gasifier. The experimental data is obtained on a laboratory scale prototype in the Chemical Engineering laboratory at COMSATS University Islamabad. The Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System use four input features—pressure, single mean diameter, total valve opening and riser dp—and one output feature mass flow rate with multiple neurons in the hidden layers to estimate the flow of solid particles in the riser. Both Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System model worked on 217 data samples and output results are compared based on their Mean Square Error, Regression analysis, Mean Absolute Error and Mean Absolute Percentage Error. The experimental results show the effectiveness of Adaptive Neuro-Fuzzy Inference System (Mean Square Error is 0.0519 and Regression analysis R2=1.0000), as it outperformed Artificial Neural Network in terms of accuracy (Mean Square Error is 1.0677 and Regression analysis R2=0.9806).


Sign in / Sign up

Export Citation Format

Share Document