scholarly journals “The Word Real Is No Longer Real”: Deepfakes, Gender, and the Challenges of AI-Altered Video

2019 ◽  
Vol 3 (1) ◽  
pp. 32-46 ◽  
Author(s):  
Travis L. Wagner ◽  
Ashley Blewer

Abstract It is near-impossible for casual consumers of images to authenticate digitally-altered images without a keen understanding of how to “read” the digital image. As Photoshop did for photographic alteration, so to have advances in artificial intelligence and computer graphics made seamless video alteration seem real to the untrained eye. The colloquialism used to describe these videos are “deepfakes”: a portmanteau of deep learning AI and faked imagery. The implications for these videos serving as authentic representations matters, especially in rhetorics around “fake news.” Yet, this alteration software, one deployable both through high-end editing software and free mobile apps, remains critically under examined. One troubling example of deepfakes is the superimposing of women’s faces into pornographic videos. The implication here is a reification of women’s bodies as a thing to be visually consumed, here circumventing consent. This use is confounding considering the very bodies used to perfect deepfakes were men. This paper explores how the emergence and distribution of deepfakes continues to enforce gendered disparities within visual information. This paper, however, rejects the inevitability of deepfakes arguing that feminist oriented approaches to artificial intelligence building and a critical approaches to visual information literacy can stifle the distribution of violently sexist deepfakes.

Author(s):  
Ujwal Patil ◽  
Prof. P. M. Chouragade

<p>The technological advancements and a qualitative improvement in the field of artificial intelligence and deep learning leads to the creation of realistic-looking but phoney digital content known as deepfakes .These manipulated videos can quickly be shared via social media to spread fake news or disinformation which not only impacts those who are deceived it also harms social media sites by diminishing faith.These deepfake videos cannot be checked since there are no regulatory mechanisms in place .As a result these untrustworthy outlets will post whatever they wish causing confusion in society in some ways.Current solutions are unable to provide digital media history tracing and authentication it is essential to develop successful methods for detecting deepfake video as a result it is necessary to determine the source or origin of such deepfake footage.That’s why we are implementing blockchain techniques to trace back and determine the origin of digital media blockchain techniques helps in the effective recognition of deepfake video and calculating the trust factor of user.</p>


2020 ◽  
Vol 2 ◽  
pp. 58-61 ◽  
Author(s):  
Syed Junaid ◽  
Asad Saeed ◽  
Zeili Yang ◽  
Thomas Micic ◽  
Rajesh Botchu

The advances in deep learning algorithms, exponential computing power, and availability of digital patient data like never before have led to the wave of interest and investment in artificial intelligence in health care. No radiology conference is complete without a substantial dedication to AI. Many radiology departments are keen to get involved but are unsure of where and how to begin. This short article provides a simple road map to aid departments to get involved with the technology, demystify key concepts, and pique an interest in the field. We have broken down the journey into seven steps; problem, team, data, kit, neural network, validation, and governance.


Author(s):  
Sulharmi Irawan ◽  
Yasir Hasan ◽  
Kennedi Tampubolon

Glass reflection image displays unclear or suboptimal visuals, such as overlapping images that blend with overlapping displays, so objects in images that have information and should be able to be processed for advanced research in the field of image processing or computer graphics do not give the impression so that research can be done. Improvement of overlapping images can be separated by displaying one of the image objects, the method that can be used is the Contras Limited Adaptive Histogram Equalization (CLAHE) method. CLAHE can improve the color and appearance of objects that are not clear on the image. Images that experience cases such as glass reflection images can be increased in contrast values to separate or accentuate one of the objects contained in the image using the Contrast Limited Adaptive Histogram Equalization (CLAHE) method.Keywords: Digital Image, Glass Reflection, Contrast, CLAHE, YIQ.


2018 ◽  
Vol 15 (1) ◽  
pp. 6-28 ◽  
Author(s):  
Javier Pérez-Sianes ◽  
Horacio Pérez-Sánchez ◽  
Fernando Díaz

Background: Automated compound testing is currently the de facto standard method for drug screening, but it has not brought the great increase in the number of new drugs that was expected. Computer- aided compounds search, known as Virtual Screening, has shown the benefits to this field as a complement or even alternative to the robotic drug discovery. There are different methods and approaches to address this problem and most of them are often included in one of the main screening strategies. Machine learning, however, has established itself as a virtual screening methodology in its own right and it may grow in popularity with the new trends on artificial intelligence. Objective: This paper will attempt to provide a comprehensive and structured review that collects the most important proposals made so far in this area of research. Particular attention is given to some recent developments carried out in the machine learning field: the deep learning approach, which is pointed out as a future key player in the virtual screening landscape.


Pathology ◽  
2021 ◽  
Vol 53 ◽  
pp. S6
Author(s):  
Jack Garland ◽  
Mindy Hu ◽  
Kilak Kesha ◽  
Charley Glenn ◽  
Michael Duffy ◽  
...  

2020 ◽  
Vol 114 ◽  
pp. 242-245
Author(s):  
Jootaek Lee

The term, Artificial Intelligence (AI), has changed since it was first coined by John MacCarthy in 1956. AI, believed to have been created with Kurt Gödel's unprovable computational statements in 1931, is now called deep learning or machine learning. AI is defined as a computer machine with the ability to make predictions about the future and solve complex tasks, using algorithms. The AI algorithms are enhanced and become effective with big data capturing the present and the past while still necessarily reflecting human biases into models and equations. AI is also capable of making choices like humans, mirroring human reasoning. AI can help robots to efficiently repeat the same labor intensive procedures in factories and can analyze historic and present data efficiently through deep learning, natural language processing, and anomaly detection. Thus, AI covers a spectrum of augmented intelligence relating to prediction, autonomous intelligence relating to decision making, automated intelligence for labor robots, and assisted intelligence for data analysis.


Sign in / Sign up

Export Citation Format

Share Document