Visualization and simulation of filling process of simultaneous co-injection molding based on level set method

2015 ◽  
Vol 35 (9) ◽  
pp. 813-827 ◽  
Author(s):  
Qingsheng Liu ◽  
Jie Ouyang ◽  
Zhijun Liu ◽  
Wuming Li

Abstract Co-injection molding (CIM) is an advanced technology which was developed to meet quality requirements and to reduce the material cost. Theoretical investigations concerning it are very limited, especially for simultaneous CIM. The interactions of air, skin and core polymer melt in the process are very complex, which makes it more challenging to simulate free surface flows in the mold. Thus, this article presents a mathematical model for it. The extended Pom-Pom (XPP) model is selected to predict the viscoelastic behavior of polymer melt. The free surface is captured by the level set method. The article vividly shows the simultaneous CIM process by means of a visual numerical simulation technique. Both two-dimensional (2D) and 3D examples are presented to validate the model and illustrate its capabilities. The 3D flow behaviors of simultaneous CIM process are hard to predict numerically. To our knowledge, this is the first attempt at simulating melt flow behaviors in 3D simultaneous CIM based on the XPP constitutive equation and visual technique. The numerical results are in good agreement with the available experiment results, which establish the capability of the multiphase flow model presented in this article to simulate the flow behaviors of polymer melt in simultaneous CIM process.

2016 ◽  
Vol 136 ◽  
pp. 212-227 ◽  
Author(s):  
J.M. Cubos-Ramírez ◽  
J. Ramírez-Cruz ◽  
M. Salinas-Vázquez ◽  
W. Vicente-Rodríguez ◽  
E. Martinez-Espinosa ◽  
...  

2005 ◽  
Vol 19 (28n29) ◽  
pp. 1743-1746
Author(s):  
HANBIN GU ◽  
YANBAO LI ◽  
PENGZHI LIN

A three-dimension numerical wave model (3DWAVE) has been developed to simulate free surface flows. The model solves Navier-Stokes equations for two-phase flows of air and water. The level set method is employed to track water surfaces. The model is tested for water sloshing in a 3-D confined tank. The relative error in the mass and total energy computation is less than 1%. Excellent agreements between numerical results and analytical solution are obtained for free surface calculation. The nonlinearity in the 3-D fluid sloshing is analyzed. These have laid a foundation on research of breaking waves.


Author(s):  
Doug Enright ◽  
Duc Nguyen ◽  
Frederic Gibou ◽  
Ron Fedkiw

In this paper, we present an enhanced resolution capturing method for topologically complex two and three dimensional incompressible free surface flows. The method is based upon the level set method of Osher and Sethian to represent the interface combined with two recent advances in the treatment of the interface, a second order accurate discretization of the Dirichlet pressure boundary condition at the free surface (2002, J. Comput. Phys.176, 205) and the use of massless marker particles to enhance the resolution of the interface through the use of the particle level set method (2002, J. Comput. Phys., 183, 83). Use of these methods allow for the accurate movement of the interface while at the same time preserving the mass of the liquid, even on coarse computational grids. Also, these methods complement the level set method in its ability to handle changes in interface topology in a robust manner. Surface tension effects can be easily included in our method. The method is presented in three spatial dimensions, with numerical examples in both two and three spatial dimensions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tomás Chacón Rebollo ◽  
Macarena Gómez Mármol ◽  
Isabel Sánchez Muñoz

Abstract In this paper, we study a finite element discretization of a Level Set Method formulation of free-surface flow. We consider an Euler semi-implicit discretization in time and a Galerkin discretization of the level set function. We regularize the density and viscosity of the flow across the interface, following the Level Set Method. We prove stability in natural norms when the viscosity and density vary from one to the other layer and optimal error estimates for smooth solutions when the layers have the same density. We present some numerical tests for academic flows.


Sign in / Sign up

Export Citation Format

Share Document