Introduction: hydrogen storage as solution for a changing energy landscape

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Thomas Zell ◽  
Robert Langer

Abstract The expansion of sustainable technologies and infrastructures for the production and delivery of energy to the final consumer and the development of new technologies for energy production, storage and distribution, are challenging and inevitable tasks. Power plants based on the combustion of fossil fuel resources or nuclear power plants are not suitable to provide energy in the future due to significant disadvantages and dangers associated with these outdated technologies. The development of new sustainable technologies for the production of energy is desirable. Besides focusing on the production step, the change in global energy landscape requires also new and improved energy storage systems. Requirements for these storage solutions will strongly depend on the application. Storing energy by producing and consuming hydrogen is in this context a very attractive approach. It may be suitable for storage of energy for transportation and also for the bulk energy storage. Due to physical restrictions of high pressure hydrogen storage, alternative techniques are developed. This is, in turn, an ongoing task with multidisciplinary aspects, which combines chemistry, physics, material science and engineering. Herein, we review the production and consumption of energy, different energy storage applications, and we introduce the concept of hydrogen storage based on hydrogenation and dehydrogenation reactions of small molecules.

2013 ◽  
Vol 448-453 ◽  
pp. 2786-2789 ◽  
Author(s):  
Jin Li ◽  
Chu Fu Li ◽  
Yan Xia Zhang ◽  
Hui Guo Yue

Nuclear plants are facing more and more peaking pressure, and combined operation with compressed air energy storage (CAES) systems is an effective approach to improve its peaking capacity. This work first simulates and conducts the exergy analysis for the CAES system. The results show that exergy efficiency of the CAES system is about 51.7%, as well as the exergy loss are primary in the fuel combustion and compressed air cooling processes, accounted for 25.4% and 11.3% of total exergy, respectively. Subsequently, three combined operation modes between CAES system and nuclear power plants for power grid peaking are investigated, which shows that three section tracking mode and incomplete tracking mode can achieve the balance between peaking effects and peaking cost.


Author(s):  
Eugene Babeshko ◽  
Ievgenii Bakhmach ◽  
Vyacheslav Kharchenko ◽  
Eugene Ruchkov ◽  
Oleksandr Siora

Operating reliability assessment of instrumentation and control systems (I&Cs) is always one of the most important activities, especially for critical domains like nuclear power plants (NPPs). Intensive use of relatively new technologies like field programmable gate arrays (FPGAs) in I&C which appear in upgrades and in newly built NPPs makes task to develop and validate advanced operating reliability assessment methods that consider specific technology features very topical. Increased integration densities make the reliability of integrated circuits the most crucial point in modern NPP I&Cs. Moreover, FPGAs differ in some significant ways from other integrated circuits: they are shipped as blanks and are very dependent on design configured into them. Furthermore, FPGA design could be changed during planned NPP outage for different reasons. Considering all possible failure modes of FPGA-based NPP I&C at design stage is a quite challenging task. Therefore, operating reliability assessment is one of the most preferable ways to perform comprehensive analysis of FPGA-based NPP I&Cs. This paper summarizes our experience on operating reliability analysis of FPGA based NPP I&Cs.


Signals ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 803-819
Author(s):  
Nabin Chowdhury

As digital instrumentation in Nuclear Power Plants (NPPs) is becoming increasingly complex, both attack vectors and defensive strategies are evolving based on new technologies and vulnerabilities. Continued efforts have been made to develop a variety of measures for the cyber defense of these infrastructures, which often consist in adapting security measures previously developed for other critical infrastructure sectors according to the requirements of NPPs. That being said, due to the very recent development of these solutions, there is a lack of agreement or standardization when it comes to their adoption at an industrial level. To better understand the state of the art in NPP Cyber-Security (CS) measures, in this work, we conduct a Systematic Literature Review (SLR) to identify scientific papers discussing CS frameworks, standards, guidelines, best practices, and any additional CS protection measures for NPPs. From our literature analysis, it was evidenced that protecting the digital space in NPPs involves three main steps: (i) identification of critical digital assets; (ii) risk assessment and threat analysis; (iii) establishment of measures for NPP protection based on the defense-in-depth model. To ensure the CS protection of these infrastructures, a holistic defense-in-depth approach is suggested in order to avoid excessive granularity and lack of compatibility between different layers of protection. Additional research is needed to ensure that such a model is developed effectively and that it is based on the interdependencies of all security requirements of NPPs.


2021 ◽  
Vol 11 (18) ◽  
pp. 8484
Author(s):  
Seok-Ho Song ◽  
Jin-Young Heo ◽  
Jeong-Ik Lee

A nuclear power plant is one of the power sources that shares a large portion of base-load. However, as the proportion of renewable energy increases, nuclear power plants will be required to generate power more flexibly due to the intermittency of the renewable energy sources. This paper reviews a layout thermally integrating the liquid air energy storage system with a nuclear power plant. To evaluate the performance realistically while optimizing the layout, operating nuclear power plant conditions are used. After revisiting the analysis, the optimized performance of the proposed system is predicted to achieve 59.96% of the round-trip efficiency. However, it is further shown that external environmental conditions could deteriorate the performance. For the design of liquid air energy storage-nuclear power plant integrated systems, both the steam properties of the linked plants and external factors should be considered.


2008 ◽  
Vol 33 (17) ◽  
pp. 4463-4475 ◽  
Author(s):  
Gregor Taljan ◽  
Michael Fowler ◽  
Claudio Cañizares ◽  
Gregor Verbič

Sign in / Sign up

Export Citation Format

Share Document