scholarly journals Hamiltonian extensions in quantum metrology

Author(s):  
Julien Mathieu Elias Fraïsse ◽  
Daniel Braun

AbstractWe study very generally towhat extent the uncertainty with which a phase shift can be estimated in quantum metrology can be reduced by extending the Hamiltonian that generates the phase shift to an ancilla system with a Hilbert space of arbitrary dimension, and allowing arbitrary interactions between the original system and the ancilla. Such Hamiltonian extensions provide a general framework for open quantum systems, as well as for “non-linear metrology schemes” that have been investigated over the last few years. We prove that such Hamiltonian extensions cannot improve the sensitivity of the phase shift measurement when considering the quantum Fisher information optimized over input states.

2016 ◽  
Vol 5 (1) ◽  
pp. 13-39 ◽  
Author(s):  
J. F. Haase ◽  
A. Smirne ◽  
S. F. Huelga ◽  
J. Kołodynski ◽  
R. Demkowicz-Dobrzanski

Abstract The laws of quantum mechanics allow to perform measurements whose precision supersedes results predicted by classical parameter estimation theory. That is, the precision bound imposed by the central limit theorem in the estimation of a broad class of parameters, like atomic frequencies in spectroscopy or external magnetic field in magnetometry, can be overcomewhen using quantum probes. Environmental noise, however, generally alters the ultimate precision that can be achieved in the estimation of an unknown parameter. This tutorial reviews recent theoretical work aimed at obtaining general precision bounds in the presence of an environment.We adopt a complementary approach,wherewe first analyze the problem within the general framework of describing the quantum systems in terms of quantum dynamical maps and then relate this abstract formalism to a microscopic description of the system’s dissipative time evolution.We will show that although some forms of noise do render quantum systems standard quantum limited, precision beyond classical bounds is still possible in the presence of different forms of local environmental fluctuations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hossein Rangani Jahromi ◽  
Rosario Lo Franco

AbstractHilbert–Schmidt speed (HSS) is a special type of quantum statistical speed which is easily computable, since it does not require diagonalization of the system state. We find that, when both HSS and quantum Fisher information (QFI) are calculated with respect to the phase parameter encoded into the initial state of an n-qubit register, the zeros of the HSS dynamics are actually equal to those of the QFI dynamics. Moreover, the signs of the time-derivatives of both HSS and QFI exactly coincide. These findings, obtained via a thorough investigation of several paradigmatic open quantum systems, show that HSS and QFI exhibit the same qualitative time evolution. Therefore, HSS reveals itself as a powerful figure of merit for enhancing quantum phase estimation in an open quantum system made of n qubits. Our results also provide strong evidence for both contractivity of the HSS under memoryless dynamics and its sensitivity to system-environment information backflows to detect the non-Markovianity in high-dimensional systems, as suggested in previous studies.


Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 192 ◽  
Author(s):  
Prahlad Warszawski ◽  
Howard M. Wiseman

For a Markovian (in the strongest sense) open quantum system it is possible, by continuously monitoring the environment, to perfectly track the system; that is, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert space dimension D, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension K of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit (D=2) is always possible with a bit (K=2), and gave a heuristic argument implying that a finite K should be sufficient for any D, although beyond D=2 it would be necessary to have K>D. Our paper is concerned with rigorously investigating the relationship between D and Kmin, the smallest feasible K. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with D>2, Kmin>D, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond D=2, D-dimensional open quantum systems are provably harder to track than D-dimensional open classical systems. We stress that this result allows complete freedom in choice of monitoring scheme, including adaptive monitoring which is, in general, necessary to implement a physically realizable ensemble (as it is known) of just K pure states. Moreover, we develop, and better justify, a new heuristic to guide our expectation of Kmin as a function of D, taking into account the number L of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries (that we recently introduced elsewhere, [New J. Phys. https://doi.org/10.1088/1367-2630/ab14b2]) makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles in D=3. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, Kmin∼D2, implying a quadratic gap between the classical and quantum tracking problems. Explicit adaptive monitoring schemes that realize the discovered finite ensembles are obtained numerically, thus facilitating future experimental investigations.


2019 ◽  
Vol 26 (02) ◽  
pp. 1950010
Author(s):  
Takeo Kamizawa

The analysis of an open quantum system can be by far difficult if the dimension of the system Hilbert space is large or infinite. However, in some cases the dynamics on a finite-dimensional Hilbert space can be decomposed into a block-diagonal form, which simplifies the system structure. In this presentation, we will study several criteria for the complete reducibility and, in addition, a computational method for a basis of each simplified component to apply for the analysis of open quantum systems. An important point of these tools is that they are “effective” methods (one can complete the task in a finite number of steps).


2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Eugene F. Dumitrescu ◽  
Pavel Lougovski

Sign in / Sign up

Export Citation Format

Share Document