scholarly journals Open quantum systems are harder to track than open classical systems

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 192 ◽  
Author(s):  
Prahlad Warszawski ◽  
Howard M. Wiseman

For a Markovian (in the strongest sense) open quantum system it is possible, by continuously monitoring the environment, to perfectly track the system; that is, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert space dimension D, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension K of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit (D=2) is always possible with a bit (K=2), and gave a heuristic argument implying that a finite K should be sufficient for any D, although beyond D=2 it would be necessary to have K>D. Our paper is concerned with rigorously investigating the relationship between D and Kmin, the smallest feasible K. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with D>2, Kmin>D, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond D=2, D-dimensional open quantum systems are provably harder to track than D-dimensional open classical systems. We stress that this result allows complete freedom in choice of monitoring scheme, including adaptive monitoring which is, in general, necessary to implement a physically realizable ensemble (as it is known) of just K pure states. Moreover, we develop, and better justify, a new heuristic to guide our expectation of Kmin as a function of D, taking into account the number L of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries (that we recently introduced elsewhere, [New J. Phys. https://doi.org/10.1088/1367-2630/ab14b2]) makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles in D=3. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, Kmin∼D2, implying a quadratic gap between the classical and quantum tracking problems. Explicit adaptive monitoring schemes that realize the discovered finite ensembles are obtained numerically, thus facilitating future experimental investigations.

2011 ◽  
Vol 09 (07n08) ◽  
pp. 1617-1634 ◽  
Author(s):  
CÉSAR A. RODRÍGUEZ-ROSARIO ◽  
E. C. G. SUDARSHAN

We construct a non-Markovian dynamical map that accounts for systems correlated to the environment. We refer to it as a canonical dynamical map, which forms an evolution family. The relationship between inverse maps and correlations with the environment is established. The mathematical properties of complete positivity is related to classical correlations, according to quantum discord, between the system and the environment. A generalized non-Markovian master equation is derived from the canonical dynamical map.


2019 ◽  
Vol 26 (02) ◽  
pp. 1950010
Author(s):  
Takeo Kamizawa

The analysis of an open quantum system can be by far difficult if the dimension of the system Hilbert space is large or infinite. However, in some cases the dynamics on a finite-dimensional Hilbert space can be decomposed into a block-diagonal form, which simplifies the system structure. In this presentation, we will study several criteria for the complete reducibility and, in addition, a computational method for a basis of each simplified component to apply for the analysis of open quantum systems. An important point of these tools is that they are “effective” methods (one can complete the task in a finite number of steps).


2018 ◽  
Vol 189 (05) ◽  
Author(s):  
Vladislav Yu. Shishkov ◽  
Evgenii S. Andrianov ◽  
Aleksandr A. Pukhov ◽  
Aleksei P. Vinogradov ◽  
A.A. Lisyansky

2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Eugene F. Dumitrescu ◽  
Pavel Lougovski

2021 ◽  
Vol 183 (1) ◽  
Author(s):  
Géraldine Haack ◽  
Alain Joye

AbstractThis paper is devoted to the analysis of Lindblad operators of Quantum Reset Models, describing the effective dynamics of tri-partite quantum systems subject to stochastic resets. We consider a chain of three independent subsystems, coupled by a Hamiltonian term. The two subsystems at each end of the chain are driven, independently from each other, by a reset Lindbladian, while the center system is driven by a Hamiltonian. Under generic assumptions on the coupling term, we prove the existence of a unique steady state for the perturbed reset Lindbladian, analytic in the coupling constant. We further analyze the large times dynamics of the corresponding CPTP Markov semigroup that describes the approach to the steady state. We illustrate these results with concrete examples corresponding to realistic open quantum systems.


Entropy ◽  
2021 ◽  
Vol 23 (1) ◽  
pp. 77
Author(s):  
Angus J. Dunnett ◽  
Alex W. Chin

Simulating the non-perturbative and non-Markovian dynamics of open quantum systems is a very challenging many body problem, due to the need to evolve both the system and its environments on an equal footing. Tensor network and matrix product states (MPS) have emerged as powerful tools for open system models, but the numerical resources required to treat finite-temperature environments grow extremely rapidly and limit their applications. In this study we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli et al. (Phys. Rev. Lett. 2019, 123, 090402.) that shows how finite-temperature open dynamics can be obtained from zero temperature, i.e., pure wave function, simulations. Using this approach, we produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures. Despite ever-growing resource requirements, we find that converged non-perturbative results can be obtained, and we discuss a number of recent ideas and numerical techniques that should allow wide application of MPS to complex open quantum systems.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 905
Author(s):  
Nina Megier ◽  
Manuel Ponzi ◽  
Andrea Smirne ◽  
Bassano Vacchini

Simple, controllable models play an important role in learning how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.


Sign in / Sign up

Export Citation Format

Share Document