A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anuj Chaturvedi ◽  
Birendra Nath Rai ◽  
Ram Saran Singh ◽  
Ravi Prakash Jaiswal

Abstract The threat of dye contamination has achieved an unsurpassed abnormal state lately due to their massive consumption in several enterprises including textile, leather, cosmetic, plastic, and paper industries. This review focuses on the integrations of various advanced oxidation processes (AOPs), such as Fenton, photocatalysis, and ozonation, with biodegradation for the treatment of textile azo dyes. Such integrations have been explored lately by researchers to bring down the processing cost and improve the degree of mineralization of the treated dyeing wastewater. The review refers to the basic mechanisms, the influence of various process parameters, outcomes of recent works, and future research directions. All the three AOPs, independently, demonstrated substantial color reduction of 54–100%. The ozonation process, stand-alone, showed the most efficient decolorization (of 88–100%) consistently in all reviewed research works. In contrast, all three AOPs independently offered varied and inadequate COD reduction in the range of 16–80%. The AOPs, after getting integrated with biodegradation, yielded an additional reduction (of 11–70%) in the COD-levels and (of 16–80%) in the TOC-levels. Further, the integration of AOPs with biodegradation has potential to significantly reduce the treatment costs. The review suggests further research efforts in the direction of sequencing chemical and biological routes such that their synergistic utilization yield complete detoxification of the textile azo dyes economically at large-scale.

Author(s):  
Gamallo Maria ◽  
Moldes-Diz Yolanda ◽  
Taboada-Puig Roberto ◽  
Lema Juan Manuel ◽  
Feijoo Gumersindo ◽  
...  

Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


Industrialization and modernization in recent times have led to a water crisis across the world. Conventional methods of water treatment like physical, chemical and biological methods which comprise of many commonly used techniques like membrane separation, adsorption, chemical treatment etc. have been in use for many decades. However, problems like sludge disposal, high operating costs etc. have led to increased focus on Advanced Oxidation Processes (AOPs) as alternative treatment methods. AOPs basically involve reactions relying on the high oxidation potential of the hydroxyl (OH•) free radical. They have the potential to efficiently treat various toxic, organic pollutants and complete degradation of contaminants (mineralization) of emerging concern. Many different types of homogenous as well as heterogenous AOPs have been studied viz: UV/H2O2, Fenton, Photo-Fenton, Sonolysis, Photocatalysis etc. for treatment of a wide variety of organic pollutants. Different AOPs are suitable for different types of wastewater and hence proper selection of the right technique for a particular type of pollutant is required. The inherent advantages offered by AOPs like elimination of sludge disposal problems, operability under mild conditions, ability to harness sunlight, non selective nature (ability to degrade all organic and microbial contamination) etc. have made it one of the most actively researched areas in recent times for wastewater treatment. Despite the benefits and intense research, commercial applicability of AOPs as a practical technique for treating wastewater on a large scale is still far from satisfactory. Nevertheless, positive results in lab scale and pilot plant studies make them a promising water treatment technique for the future. In the present chapter, an attempt has been made to discuss all aspects of AOPs beginning with the fundamental concepts, classification, underlying mechanism, comparison, commercialization to the latest developments in AOPs.


2015 ◽  
Vol 57 (30) ◽  
pp. 13987-13994 ◽  
Author(s):  
Cristina López-López ◽  
Jaime Martín-Pascual ◽  
Juan Carlos Leyva-Díaz ◽  
María V. Martínez-Toledo ◽  
María M. Muñío ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3515
Author(s):  
Yiqing Zhang ◽  
Kashif Shaad ◽  
Derek Vollmer ◽  
Chi Ma

Textile manufacturing is a multi-stage operation process that produces significant amounts of highly toxic wastewater. Given the size of the global textile market and its environmental impact, the development of effective, economical, and easy-to handle alternative treatment technologies for textile wastewater is of significant interest. Based on the analysis of peer-reviewed publications over the last two decades, this paper provides a comprehensive review of advanced oxidation processes (AOPs) on textile wastewater treatment, including their performances, mechanisms, advantages, disadvantages, influencing factors, and electrical energy per order (EEO) requirements. Fenton-based AOPs show the lowest median EEO value of 0.98 kWh m−3 order−1, followed by photochemical (3.20 kWh m−3 order−1), ozonation (3.34 kWh m−3 order−1), electrochemical (29.5 kWh m−3 order−1), photocatalysis (91 kWh m−3 order−1), and ultrasound (971.45 kWh m−3 order−1). The Fenton process can treat textile effluent at the lowest possible cost due to the minimal energy input and low reagent cost, while Ultrasound-based AOPs show the lowest electrical efficiency due to the high energy consumption. Further, to explore the applicability of these methods, available results from a full-scale implementation of the enhanced Fenton technology at a textile mill wastewater treatment plant (WWTP) are discussed. The WWTP operates at an estimated cost of CNY ¥1.62 m−3 (USD $0.23 m−3) with effluent meeting the China Grade I-A pollutant discharge standard for municipal WWTPs, indicating that the enhanced Fenton technology is efficient and cost-effective in industrial treatment for textile effluent.


Sign in / Sign up

Export Citation Format

Share Document