A review on TiO2-based composites for superior photocatalytic activity

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wail Al Zoubi ◽  
Abbas Ali Salih Al-Hamdani ◽  
Baek Sunghun ◽  
Young Gun Ko

Abstract Heterogeneous photocatalysts was a promising material for removing organic pollutants. Titanium dioxide (TiO2) was a suitable photocatalyst for its cost efficiency and high stability to reduce various pollutants. Enhancing TiO2 photocatalyst performance by doping with changed metals or non-metal ions and organic compounds have been reviewed. These methods could enhance photoelectrochemical activity via: (i) by a donor of electrons via electron-donor agents that would produce particular defects in TiO2 structure and capture transporters of charge; (ii) by reducing recombination rate of the charge transporters and increasing degradation of pollutants. This study investigates the modification approaches of TiO2 that comprise methods for overcoming the essential TiO2 restrictions and enhancing the photocatalytic degradation of organic pollutants. Consequently, it emphasized on the current progress of modified-TiO2 used for different pollutants in ambient conditions. Amendment techniques, such as inorganic and organic parts as doping, are studied. The reported experimental results obtained with the photocatalytic oxidation process for degrading organic pollutants were also collected and assessed.

2020 ◽  
Vol 56 (5) ◽  
pp. 766-769 ◽  
Author(s):  
Ziqian Liu ◽  
Qing Su ◽  
Pengyao Ju ◽  
Xiaodong Li ◽  
Guanghua Li ◽  
...  

The highly hydrophilic COF exhibits superior photocatalytic activity and recyclability together with environmental benignity in photocatalytic oxidation of benzylamine in water under ambient conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ting Feng ◽  
Gen Sheng Feng ◽  
Lei Yan ◽  
Jia Hong Pan

The present paper reviews the progress in the synthesis of one-dimensional (1D) TiO2nanostructures and their environmental applications in the removal of organic pollutants. According to the shape, 1D TiO2nanostructures can be divided into nanorods, nanotubes, nanowires/nanofibers, and nanobelts. Each of them can be synthesized via different technologies, such as sol-gel template method, chemical vapor deposition, and hydrothermal method. These methods are discussed in this paper, and the recent development of the synthesis technologies is also presented. Furthermore, the organic pollutants, degradation using the synthesized 1D TiO2nanostructures is studied as an important application of photocatalytic oxidation (PCO). The 1D nanostructured TiO2exhibited excellent photocatalytic activity in a PCO process, and the mechanism of photocatalytic degradation of organic pollutants is also discussed. Moreover, the modification of 1D TiO2nanostructures using metal ions, metal oxide, or inorganic element can further enhance the photocatalytic activity of the photocatalyst. This phenomenon can be explained by the suppression of e−-h+pairs recombination rate, increased specific surface area, and reduction of band gap. In addition, 1D nanostructured TiO2can be further constructed as a film or membrane, which may extend its practical applications.


2019 ◽  
Vol 18 (8) ◽  
pp. 1683-1692 ◽  
Author(s):  
Lidia Favier ◽  
Lacramioara Rusu ◽  
Andrei Ionut Simion ◽  
Raluca Maria Hlihor ◽  
Mariana Liliana Pacala ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Khee Chung Hui ◽  
Hazwani Suhaimi ◽  
Nonni Soraya Sambudi

Abstract Titanium dioxide (TiO2) is commonly used as a photocatalyst in the removal of organic pollutants. However, weaknesses of TiO2 such as fast charge recombination and low visible light usage limit its industrial application. Furthermore, photocatalysts that are lost during the treatment of pollutants create the problem of secondary pollutants. Electrospun-based TiO2 fiber is a promising alternative to immobilize TiO2 and to improve its performance in photodegradation. Some strategies have been employed in fabricating the photocatalytic fibers by producing hollow fibers, porous fibers, composite TiO2 with magnetic materials, graphene oxide, as well as doping TiO2 with metal. The modification of TiO2 can improve the absorption of TiO2 to the visible light area, act as an electron acceptor, provide large surface area, and promote the phase transformation of TiO2. The improvement of TiO2 properties can enhance carrier transfer rate which reduces the recombination and promotes the generation of radicals that potentially degrade organic pollutants. The recyclability of fibers, calcination effect, photocatalytic reactors used, operation parameters involved in photodegradation as well as the commercialization potential of TiO2 fibers are also discussed in this review.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10300-10308
Author(s):  
Hui Feng ◽  
Siqi Feng ◽  
Niu Tang ◽  
Songbai Zhang ◽  
Xiangyang Zhang ◽  
...  

New idea for the low cost synthesis of high performance photocatalysts for the photodegradation of organic pollutants in aqueous solution.


2021 ◽  
Vol 125 (15) ◽  
pp. 8407-8417
Author(s):  
Ramesh Naidu Jenjeti ◽  
Rajat Kumar ◽  
A. Sellam ◽  
S. Sampath

Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1127 ◽  
Author(s):  
Neli Mintcheva ◽  
Ali Aljulaih ◽  
Wilfried Wunderlich ◽  
Sergei Kulinich ◽  
Satoru Iwamori

Sign in / Sign up

Export Citation Format

Share Document