Cloning and expression analysis of ZmABI3 gene in Zea mays

2017 ◽  
Vol 42 (3) ◽  
Author(s):  
Qiaoyun Weng ◽  
Jinhui Song ◽  
Hailian Ma ◽  
Jincheng Yuan ◽  
Yanmin Zhao ◽  
...  

AbstractObjectiveABI3 is a B3 domain transcription factor existed in various plant species. Studies showed that ABI3 play important role in plant growth and development.MethodsTheResultsOne gene contained B3 domain was isolated from maize, designated asConclusionA new gene contained a B3 domain was cloned and named as


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Intikhab Alam ◽  
Cui-Cui Liu ◽  
Hong-Liu Ge ◽  
Khadija Batool ◽  
Yan-Qing Yang ◽  
...  

Abstract Background Plant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an “epigenome reader”, and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day. Brassica rapa (AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families among Brassica species due to its close relationship to Arabidopsis thaliana. Results We identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version of B. rapa genome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in protein binding activity. Phylogenetic, gene structure, and additional domain analyses clustered them into different groups and subgroups, reflecting their diverse functional roles during plant growth and development. Chromosomal location analysis showed that they were unevenly distributed on the 10 B. rapa chromosomes. Expression analysis from RNA-Seq data showed that 55.7% of them were constitutively expressed in all the tested tissues or organs with relatively higher expression levels reflecting their important housekeeping roles in plant growth and development, while several other members were identified as preferentially expressed in specific tissues or organs. Expression analysis of a subset of 18 B. rapa PHD finger genes under drought and salt stresses showed that all these tested members were responsive to the two abiotic stress treatments. Conclusions Our results reveal that the PHD finger genes play diverse roles in plant growth and development, and can serve as a source of candidate genes for genetic engineering and improvement of Brassica crops against abiotic stresses. This study provides valuable information and lays the foundation for further functional determination of PHD finger genes across the Brassica species.



2018 ◽  
Vol 42 (4) ◽  
pp. 1368-1380 ◽  
Author(s):  
David A. Camarena‐Pozos ◽  
Víctor M. Flores‐Núñez ◽  
Mercedes G. López ◽  
José López‐Bucio ◽  
Laila P. Partida‐Martínez


Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 562 ◽  
Author(s):  
Habiba Balafrej ◽  
Didier Bogusz ◽  
Zine-El Abidine Triqui ◽  
Abdelkarim Guedira ◽  
Najib Bendaou ◽  
...  

Zinc is an essential microelement involved in many aspects of plant growth and development. Abnormal zinc amounts, mostly due to human activities, can be toxic to flora, fauna, and humans. In plants, excess zinc causes morphological, biochemical, and physiological disorders. Some plants have the ability to resist and even accumulate zinc in their tissues. To date, 28 plant species have been described as zinc hyperaccumulators. These plants display several morphological, physiological, and biochemical adaptations resulting from the activation of molecular Zn hyperaccumulation mechanisms. These adaptations can be varied between species and within populations. In this review, we describe the physiological and biochemical as well as molecular mechanisms involved in zinc hyperaccumulation in plants.



2015 ◽  
Vol 58 ◽  
pp. 61-70 ◽  
Author(s):  
Paul B. Larsen

Ethylene is the simplest unsaturated hydrocarbon, yet it has profound effects on plant growth and development, including many agriculturally important phenomena. Analysis of the mechanisms underlying ethylene biosynthesis and signalling have resulted in the elucidation of multistep mechanisms which at first glance appear simple, but in fact represent several levels of control to tightly regulate the level of production and response. Ethylene biosynthesis represents a two-step process that is regulated at both the transcriptional and post-translational levels, thus enabling plants to control the amount of ethylene produced with regard to promotion of responses such as climacteric flower senescence and fruit ripening. Ethylene production subsequently results in activation of the ethylene response, as ethylene accumulation will trigger the ethylene signalling pathway to activate ethylene-dependent transcription for promotion of the response and for resetting the pathway. A more detailed knowledge of the mechanisms underlying biosynthesis and the ethylene response will ultimately enable new approaches to be developed for control of the initiation and progression of ethylene-dependent developmental processes, many of which are of horticultural significance.



Sign in / Sign up

Export Citation Format

Share Document