Defining the Ecological Coefficient of Performance for an Aircraft Propulsion System

2018 ◽  
Vol 35 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Yasin Şöhret

Abstract The aircraft industry, along with other industries, is considered responsible these days regarding environmental issues. Therefore, the performance evaluation of aircraft propulsion systems should be conducted with respect to environmental and ecological considerations. The current paper aims to present the ecological coefficient of performance calculation methodology for aircraft propulsion systems. The ecological coefficient performance is a widely-preferred performance indicator of numerous energy conversion systems. On the basis of thermodynamic laws, the methodology used to determine the ecological coefficient of performance for an aircraft propulsion system is parametrically explained and illustrated in this paper for the first time. For a better understanding, to begin with, the exergy analysis of a turbojet engine is described in detail. Following this, the outputs of the analysis are employed to define the ecological coefficient of performance for a turbojet engine. At the end of the study, the ecological coefficient of performance is evaluated parametrically and discussed depending on selected engine design parameters and performance measures. The author asserts the ecological coefficient of performance to be a beneficial indicator for researchers interested in aircraft propulsion system design and related topics.


Author(s):  
John C. Bentz

Electrical energy sources offer some interesting possibilies for aircraft propulsion. Of particular interest are electric propulsion systems developed for aircraft that are designed for high altitude, long endurance (HALE) missions. This class of aircraft would greatly benefit from an aircraft propulsion system which minimizes thermal energy rejection and environmental pollutants. Electric propulsion systems may prove viable for the HALE mission, if reliable energy sources can be developed that are both fuel and weight efficient. Fuel cells are a possible energy source. This paper discusses the thermodynamic cyclic analysis of a fuel cell powered electric propulsion system. In particular, phosphoric acid and polymer electrolyte fuel cells are evaluated as possible energy sources.



2020 ◽  
Vol 12 (1) ◽  
pp. 13-26
Author(s):  
Sorin BERBENTE ◽  
Irina-Carmen ANDREI ◽  
Gabriela STROE ◽  
Mihaela-Luminita COSTEA

Aircraft Health Management Technology for jet engines represents a very important problem, since it develops a large impact on reducing the engine life cycle costs, improving the fuel efficiency, increasing the engines durability and life cycle. This technology is high-end and, in order to enable an improved level of performance that far exceeds the current one, propulsion systems must comply with terms of reducing harmful emissions, maximizing fuel efficiency and minimizing noise, while improving system’s affordability and safety. Aircraft Health Management Technology includes multiple goals of aircraft propulsion control, diagnostics problems, prognostics realized, and their proper integration in control systems. Modern control for Aircraft Health Management Technology is based on improved control techniques and therefore provides improved aircraft propulsion system performances. The study presented in this paper approaches a new concept, of attractive interest currently, that is the intelligent control; in this context, the Health Management of jet engines is crucial, being focused on engine controllers which are designed to match certain operability and performance constraints. Automated Engine Health Management has the capacity to significantly reduce the maintenance effort and propulsion systems’ logistical footprint. In order to prioritize and resolve problems in the field of support engineering there are required more detailed data on equipment reliability and failures detection and management; the equipment design, operations and maintenance procedures and tooling are also very important.



2021 ◽  
Author(s):  
Je Ir Ryu ◽  
Austen Motily ◽  
Tonghun Lee ◽  
Riccardo Scarcelli ◽  
Sibendu Som ◽  
...  


1968 ◽  
Vol 72 (690) ◽  
pp. 490-497
Author(s):  
J. B. Taylor

Propulsion systems selected for commercial transports must provide efficient and reliable performance over a broad range of conditions. These aeroplanes are used over both short and long route segments, on non-standard days, and at a range of altitudes to meet air-line schedule requirements. This paper covers some of the design parameters that were considered in the integration of the induction system, secondary air system, jet nozzle and the basic turbojet gas generator for the SST. During recent years some of the most important gains in propulsion efficiency have resulted from the development of inlets, engines and exhaust nozzles which are matched over a broad range of operating conditions. An efficient propulsion system for a supersonic transport depends upon very close matching of these components. This, of course, requires a better understanding of the capabilities and limitations of each of these major components. For the supersonic transport, 50% or more of the gross weight will be comprised of propulsion system and fuel and less than 10% will be payload.



Sign in / Sign up

Export Citation Format

Share Document