Competition between coordination bonds and hydrogen bonding interactions in solvatomorphs of copper(II), cadmium(II) and cobalt(II) complexes with 2,2′-bipyridyl and acetate

2019 ◽  
Vol 234 (2) ◽  
pp. 119-128 ◽  
Author(s):  
José Antônio do Nascimento Neto ◽  
Cameron Capeletti da Silva ◽  
Leandro Ribeiro ◽  
Ana Karoline Silva Mendanha Valdo ◽  
Felipe Terra Martins

Abstract The delicate balance among conformation, coordination bonds and hydrogen bonding has been probed in solvatomorphs of known metal-organic molecules synthesised from copper(II), cadmium(II) and cobalt(II) with acetate (OAc) and 2,2′-bipyridine (bipy). The Cu(OAc)2(bipy) complex, isolated as a pentahydrate, has the acetate ligands oriented to opposite sides of the coordination square plane. DFT calculations show the energy difference between this structure and a syn form amount to approximately 16 kJ/mol. The presence of lattice water enables the formation of O–H···O hydrogen bonds with the acetate ligands. Different coordination numbers and energies are found as a function of the number of water molecules co-crystallising in the Cd(OAc)2(bipy)(OH2)·3H2O and [Co(OAc)(bipy)2](OAc)·3H2O complexes.

2015 ◽  
Vol 1105 ◽  
pp. 335-338
Author(s):  
Qiong Wu ◽  
Jing Lu ◽  
Xiao Lin Ji ◽  
Tao Yu Zou ◽  
Zhen Fang Qiao ◽  
...  

Modifying polyoxometalates with organic and/or metal-organic moieties is a widely adopted method for broading the range of properties. In this work a new polyoxometalate constructed from Anderson-type polyoxoanions and L-arginine (Arg =L-arginine) molecules Na [CrMo6(OH)6O18]}(H2Arg)2·8H2O(1) has been synthesized via conventional method and characterized by routine techniques. Single-crystal X-Ray diffraction analysis shows that compound 1 is constructed by chiralL-arginine grafted Anderson-type clusters, sodium cation and water molecules which are further stabilized by hydrogen bonding interactions constitute 3D supramolecular networks. In addition, both antitumor behavior and photocatalytic activities of compound 1 were investigated.


2020 ◽  
Vol 39 (1) ◽  
pp. 65
Author(s):  
Mustafa Tuğfan Bilkan

In this paper, 4TZDA-DMSO/water complexes formed by hydrogen bonding interactions were investigated by a combined experimental and computational approach. Two conformations of 4TZDA molecule were considered. Seven hydrogen-bonded 4TZDA-DMSO/H2O complexes were characterized in terms of geometries, energies and vibrational frequencies. The optimizations and calculations were performed for the complexes by Density Functional Theory. In the experimental part, the DMSO/H2O solutions of 4TZDA were prepared and infrared spectra of the solutions were recorded. After the solvation process, significant shifts in the existing bands and new band rising were observed in the experimental spectra of 4TZDA. Following results are found from this study: 1) 4TZDA (I) is more stable than 4TZDA (II). 2) Seven 4TZDA-DMSO and 4TZDA-H2O complexes are investigated and it is seen that all nitrogen atoms of 4TZDA are hydrogen bond acceptor and all hydrogen atoms are hydrogen bond donors. 3) Aqueous complexes of 4TZDA are found to form stronger hydrogen bonds compared to DMSO complexes. 4) It is determined that the most stable structures are intermolecular interactions of lpO⋯H-N and lpN⋯H-O type for the complexes. For these interactions, h-bond lengths are calculated as 1.78 and 1.90 Å and interaction energies are -7.10 kJ/mol for 4TZDA-DMSO and -50.5 kJ/mol for 4TZDA-H2O. Because of this energy difference in the complexes, it can be said 4TZDA forms more stable complexes with water molecules compared to DMSO molecules and with this property, it is an ideal molecule for pharmacological purposes.


Author(s):  
Subhashis Pradhan ◽  
Dohyun Moon ◽  
Rohith P. John

A supramolecular compound,catena-poly{[Cu2(1,3-μ2-(1a))2(μ2-ter)2(H2O)2]n·(6H2O)n} (1) has been synthesized using (1a) [(1a=N1,N3,N5-trimethyl-N1,N3,N5-tris((pyridin-4-yl)methyl)-1,3,5-benzene tricarboxamide] and terephthalate (ter) as the pillaring unit by self-assembly. The terephthalate units are connected by copper(II) ions forming a single strand, while a pair of such strands are then linked by (1a)viatwo pyridyl terminal arms bound to copper(II) nodes on either side forming a one-dimensional double stranded assembly propagating along thecaxis. The compound crystallizes in theFdd2 space group. The cavity created in the interior of this double strand assembly trap six water molecules and are stabilized by hydrogen bonding with the host. The arrangement of the pair of acyclic water trimers in isolated cavities of (1) is such that it resembles a closed-bracket-like formation. The Hirshfeld surface analysis of (1) reveals the presence of strong intermolecular hydrogen-bonding interactions between one-dimensional ladder-like units and with the water trimer in the host cavity. The copper(II)-containing coordination polymer also acts as an efficient catalyst for the Glaser–Hay homo-coupling reaction.


2012 ◽  
Vol 68 (6) ◽  
pp. m824-m825 ◽  
Author(s):  
Ichraf Chérif ◽  
Jawher Abdelhak ◽  
Mohamed Faouzi Zid ◽  
Ahmed Driss

In the crystal structure of the title compound, (C5H6ClN2)[Cr(C2O4)2(H2O)2]·1.5H2O, the CrIII atom adopts a distorted octahedral geometry being coordinated by two O atoms of two cis water molecules and four O atoms from two chelating oxalate dianions. The cis-diaquadioxalatochromate(III) anions, 2-amino-5-chloropyridinium cations and uncoordinated water molecules are linked into a three-dimensional supramolecular array by O—H...O and N—H...O hydrogen-bonding interactions. One of the two independent lattice water molecules is situated on a twofold rotation axis.


2009 ◽  
Vol 65 (6) ◽  
pp. m702-m702 ◽  
Author(s):  
Wen-Dong Song ◽  
Hao Wang ◽  
Shi-Jie Li ◽  
Pei-Wen Qin ◽  
Shi-Wei Hu

In the title mononuclear complex, [Co(C9H4N2O4)(H2O)5]·5H2O, the CoIIatom exhibits a distorted octahedral geometry involving an N atom of a 1H-benzimidazole-5,6-dicarboxylate ligand and five water O atoms. A supramolecular network is generated through intermolecular O—H...O hydrogen-bonding interactions involving the coordinated and uncoordinated water molecules and the carboxyl O atoms of the organic ligand. An intermolecular N—H...O hydrogen bond is also observed.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3370 ◽  
Author(s):  
Tiddo J. Mooibroek

A systematic evaluation of the CSD and the PDB in conjunction with DFT calculations reveal that non-covalent Carbon-bonding interactions with X–CH3 can be weakly directional in the solid state (P ≤ 1.5) when X = N or O. This is comparable to very weak CH hydrogen bonding interactions and is in line with the weak interaction energies calculated (≤ –1.5 kcal·mol−1) of typical charge neutral adducts such as [Me3N-CH3···OH2] (2a). The interaction energy is enhanced to ≤–5 kcal·mol−1 when X is more electron withdrawing such as in [O2N-CH3··O=Cdme] (20b) and to ≤18 kcal·mol−1 in cationic species like [Me3O+-CH3···OH2]+ (8a).


Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 222
Author(s):  
Lider ◽  
Sukhikh ◽  
Smolentsev ◽  
Semitut ◽  
Filatov ◽  
...  

Two binuclear coordination compounds of Cu(II) chloride with the bitopic ligand 1,1,2,2-tetrakis(pyrazol-1-yl)ethane (Pz4) of the composition [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O and [Cu2(µ2Pz4)(DMSO)2Cl4]∙2DMSO were prepared and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, single-crystal X-ray diffraction, and powder diffraction analysis. It was shown that in contrast to silver(I) and copper(II) nitrates, copper(II) chloride forms discrete complexes instead of coordination polymers. The supramolecular structure of the complex [Cu2(µ2Pz4)(DMSO)2Cl4]·4H2O with lattice water molecules is formed by OH···Cl and OH···O hydrogen bonds. Density functional theory (DFT) calculations of vibrational frequencies of the ligand and its copper(II) complex allowed for assigning IR bands to specific vibrations.


2012 ◽  
Vol 68 (6) ◽  
pp. m809-m810 ◽  
Author(s):  
Chao-Zhu Li ◽  
Xue-Ren Huang

In the title complex, [Ni(C12H9N2O3S)2(H2O)2]·4H2O, the NiII ion is coordinated by four N atoms from two bidentate chelating 4-[(pyridin-2-yl)methylideneamino]benzenesulfonate ligands and two O atoms from cis-related water molecules in a slightly distorted octahedral environment [Ni—N = 2.071 (3)–2.121 (3) Å and Ni—O = 2.071 (2) and 2.073 (3) Å]. In the crystal, the coordinated water molecules and the four water molecules of solvation are involved in intermolecular O—H...O hydrogen-bonding interactions with water and sulfonate O-atom acceptors, giving a three-dimensional framework structure.


2013 ◽  
Vol 69 (11) ◽  
pp. m598-m599
Author(s):  
Sandra Bruda ◽  
Mark M. Turnbull ◽  
Jan L. Wikaira

The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(aminomethyl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide molecules to generate the imide moiety. The CuIIion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuIIion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is occupied by a coordinating water molecule [Cu—O = 2.319 (4) Å]. The crystal structure is stabilized by hydrogen-bonding interactions between the water molecules and carbonyl O atoms. The inversion-related square-pyramidal complex molecules pack base-to-base with long Cu...Npycontact distances of 3.537 (9) Å, preventing coordination of a sixth ligand.


Sign in / Sign up

Export Citation Format

Share Document