Water in zeolite L and its MOF mimic

2019 ◽  
Vol 234 (7-8) ◽  
pp. 495-511 ◽  
Author(s):  
Ettore Fois ◽  
Gloria Tabacchi

Abstract Confinement of molecules in one dimensional arrays of channel-shaped cavities has led to technologically interesting materials. However, the interactions governing the supramolecular aggregates still remain obscure, even for the most common guest molecule: water. Herein, we use computational chemistry methods (#compchem) to study the water organization inside two different channel-type environments: zeolite L – a widely used matrix for inclusion of dye molecules, and ZLMOF – the closest metal-organic-framework mimic of zeolite L. In ZLMOF, the methyl groups of the ligands protrude inside the channels, creating nearly isolated nanocavities. These cavities host well-separated ring-shaped clusters of water molecules, dominated mainly by water-water hydrogen bonds. ZLMOF provides arrays of “isolated supramolecule” environments, which might be exploited for the individual confinement of small species with interesting optical or catalytic properties. In contrast, the one dimensional channels of zeolite L contain a continuous supramolecular structure, governed by the water interactions with potassium cations and by water-water hydrogen bonds. Water imparts a significant energetic stabilization to both materials, which increases with the water content in ZLMOF and follows the opposite trend in zeolite L. The water network in zeolite L contains an intriguing hypercoordinated structure, where a water molecule is surrounded by five strong hydrogen bonds. Such a structure, here described for the first time in zeolites, can be considered as a water pre-dissociation complex and might explain the experimentally detected high proton activity in zeolite L nanochannels.

2019 ◽  
Author(s):  
gloria tabacchi ◽  
Ettore Fois

Abstract:<div>Confinement of molecules inside one dimensional arrays of channel-shaped cavities has led to an impressive number of technologically interesting materials. However, the interactions governing the properties of the supramolecular aggregates still remain obscure, even in the case of the most common guest molecule: water. Herein, we use computational chemistry methods (#compchem) to study the water organization inside two different channel-type environments: zeolite L – a widely used matrix for inclusion of dye molecules, and ZLMOF – the closest metal-organic-framework mimic of zeolite L. In ZLMOF, the methyl groups of the ligands protrude inside the channels, creating nearly isolated nanocavities. These cavities host well-separated ring-shaped clusters of water molecules, dominated mainly by water-water hydrogen bonds. ZLMOF channels thus provide arrays of „isolated supramolecule“ environments, which might be exploited for the individual confinement of small species with interesting optical or catalytic properties. In contrast, the one dimensional nanochannels of zeolite L contain a continuous supramolecular structure, governed by the water interactions with potassium cations and by water-water hydrogen bonds. Water molecules impart a significant energetic stabilization to both materials, which increases by increasing the water content in ZLMOF, while the opposite trend is observed in zeolite L. The water network in zeolite L contains an intriguing hyper-coordinated structure, where a water molecule is surrounded by 5 strong hydrogen bonds. Such a structure, here described for the first time in zeolites, can be considered as a water pre-dissociation complex and might explain the experimentally detected high proton activity in zeolite L nanochannels. </div>


Author(s):  
gloria tabacchi ◽  
Ettore Fois

Abstract:<div>Confinement of molecules inside one dimensional arrays of channel-shaped cavities has led to an impressive number of technologically interesting materials. However, the interactions governing the properties of the supramolecular aggregates still remain obscure, even in the case of the most common guest molecule: water. Herein, we use computational chemistry methods (#compchem) to study the water organization inside two different channel-type environments: zeolite L – a widely used matrix for inclusion of dye molecules, and ZLMOF – the closest metal-organic-framework mimic of zeolite L. In ZLMOF, the methyl groups of the ligands protrude inside the channels, creating nearly isolated nanocavities. These cavities host well-separated ring-shaped clusters of water molecules, dominated mainly by water-water hydrogen bonds. ZLMOF channels thus provide arrays of „isolated supramolecule“ environments, which might be exploited for the individual confinement of small species with interesting optical or catalytic properties. In contrast, the one dimensional nanochannels of zeolite L contain a continuous supramolecular structure, governed by the water interactions with potassium cations and by water-water hydrogen bonds. Water molecules impart a significant energetic stabilization to both materials, which increases by increasing the water content in ZLMOF, while the opposite trend is observed in zeolite L. The water network in zeolite L contains an intriguing hyper-coordinated structure, where a water molecule is surrounded by 5 strong hydrogen bonds. Such a structure, here described for the first time in zeolites, can be considered as a water pre-dissociation complex and might explain the experimentally detected high proton activity in zeolite L nanochannels. </div>


2015 ◽  
Vol 51 (36) ◽  
pp. 7637-7640 ◽  
Author(s):  
Dariusz Matoga ◽  
Marcin Oszajca ◽  
Marcin Molenda

A high proton-conducting metal–organic framework (PCMOF) is prepared for the first time by economical and environmentally-friendly mechanochemistry.


2018 ◽  
Vol 47 (27) ◽  
pp. 9096-9102 ◽  
Author(s):  
Xi Wang ◽  
Dandan Lou ◽  
Xiangcheng Lu ◽  
Jianbin Wu ◽  
Ying Mu ◽  
...  

We enhance the proton conductivity of a lanthanide MOF compared to commercial Nafion by the one-pot loading of tetraethylene glycol.


2019 ◽  
Vol 44 (3-4) ◽  
pp. 193-197
Author(s):  
Xiudian Xu ◽  
Yu Liang ◽  
Junfeng Li ◽  
Lei Zhou ◽  
Li-Zhuang Chen ◽  
...  

A new three-dimensional luminescent cobalt (II) metal–organic framework, [Co(Titpe)(bcpf)·(DMF)]·(H2O)2·(DMF) (compound 1, JUST-8) (Titpe = 1,1,2,2-tetrakis(4-(1H-imidazol-1-yl)phenyl)ethane, bcpf = 4,4′-sulfonyldibenzoic acid; DMF =  N, N-dimethylformamide), has been solvothermally synthesized by using CoCl2·6H2O and a mixture of ligands: Titpe ligand and bcpf ligand. Single crystal X-ray analysis reveals that 1 crystallizes in the triclinic system and [Formula: see text] space group with a = 13.2097(14) Å, b = 13.9519(14) Å, c = 14.4413(15) Å, α = 89.949(7)°, β = 70.303(7)°, γ = 80.322(7)°, V = 2465.7(5) Å3, Z = 2, Mr =1032.97, Dc = 1.391 g/cm3, μ = 0.455 mm−1, F(000) = 1070, R = 0.0585, and wR = 0.1540 for 8674 observed reflections ( I > 2σ( I)). Its overall structure is a double-fold interpenetrated framework, and it shows a porosity of 12.97% based on a calculation by PLATON and a 4- c type topological network with the point symbol of {6^5.8}. The Co atom bridges the Titpe ligands to form the one-dimensional chains into a two-dimensional layered structure and then connects the auxiliary ligands to get a three-dimensional structure. Compound 1 showed a blue fluorescence emission with the peak maximum at 431 nm (λex = 314 nm).


2019 ◽  
Author(s):  
Timothée Stassin ◽  
Ivo Stassen ◽  
Joao Marreiros ◽  
Alexander John Cruz ◽  
Rhea Verbeke ◽  
...  

A simple solvent- and catalyst-free method is presented for the synthesis of the mesoporous metal-organic framework (MOF) MAF-6 (RHO-Zn(eIm)2) based on the reaction of ZnO with 2-ethylimidazole vapor at temperatures ≤ 100 °C. By translating this method to a chemical vapor deposition (CVD) protocol, mesoporous crystalline films could be deposited for the first time entirely from the vapor phase. A combination of PALS and Kr physisorption measurements confirmed the porosity of these MOF-CVD films and the size of the MAF-6 supercages (diam. ~2 nm), in close agreement with powder data and calculations. MAF-6 powders and films were further characterized by XRD, TGA, SEM, FTIR, PDF and EXAFS. The exceptional uptake capacity of the mesoporous MAF-6 in comparison to the microporous ZIF-8 is demonstrated by vapor-phase loading of a molecule larger than the ZIF-8 windows.


2018 ◽  
Vol 9 ◽  
pp. 2960-2967 ◽  
Author(s):  
Jan Hynek ◽  
Sebastian Jurík ◽  
Martina Koncošová ◽  
Jaroslav Zelenka ◽  
Ivana Křížová ◽  
...  

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 299-316 ◽  
Author(s):  
Dagmar Henschel ◽  
Karna Wijaya ◽  
Oliver Moers ◽  
Armand Blaschette ◽  
Peter G. Jones

Abstract In a study aim ed at the „deconstruction“ of the supramolecular aggregate 3(18C6) · 2HN( SO2Me)2 (1,18C6 = 18-crown-6), which is known to display a ladder structure with two isotactic [18C6 - Me SO2N(H)SO2Me···)∞ polymers forming the uprights and symmetrically N - H···O bonded 18C6 rings providing the rungs, the following crystalline complexes were isolated and (except for 2b) characterized by low-temperature X-ray diffraction: 18C6-ClN (SO2Me)2 (2a, triclinic, space group P1̅, Z = 2), 18C6-PhN (SO2Me)2 (2b), 18C6 -MeN(SO2Me)2 (3, monoclinic, P21/c, Z = 8), Bz18C6-HN(SO2Me)2 (4, Bz18C6 = benzo-18-crown-6, monoclinic, P21/n, Z = 4), 18C6-2 MeN (SO2Me)2 (5, triclinic, P1̅, Z = 1), 18C6-Me2SO- HN( SO2Me) (SO2Ph) (13, triclinic, P1̅, Z = 2), and 18C6-H2OMe2SO·2HN(SO2Me)2 (14, triclinic, P1̅, Z = 2). Each of the one-dimensional polymers 2a (syndiotactic), 3 (disyndiotactic) and 4 (isotactic) mimics a single upright of 1; in contrast to 1 and 2a, where the intra-catemer connectivity solely relies on S - Me ··· crow n and crown ··· O = S hydrogen bonds, this bonding system is reinforced in 3 by N -Me ··· crown and in 4 by N - H ··· crown hydrogen bonds. Complex 5 is monomeric and matches a fragment formally extruded from the catemer 3; moreover, 3 and 5 represent a rare case of two structurally characterized 18C6 complexes containing the same uncharged guest species in distinct molecular ratios. The surprising structure of the quaternary adduct 14 exhibits an [18C6 ··· MeSO2N(H)SO2Me ··· ]∞ chain, which can be regarded both as an isolated, though unmodified upright from the ladder 1 and, being syndiotactic, as a stereochemical analogue of 2a; the potentially rung-forming *NH functions in the chain are blocked by hydrogenbonded side chains of the type * N - H ··· water ··· sulfoxide ··· H - N (SO2Me)2. The ternary complex 13 consists of chains [18C6 ··· Me2SO ··· H - N (SO2Ph)SO2Me···]∞ and is not closely related to the other structures


Sign in / Sign up

Export Citation Format

Share Document