scholarly journals The nanoscaled metal-organic framework ICR-2 as a carrier of porphyrins for photodynamic therapy

2018 ◽  
Vol 9 ◽  
pp. 2960-2967 ◽  
Author(s):  
Jan Hynek ◽  
Sebastian Jurík ◽  
Martina Koncošová ◽  
Jaroslav Zelenka ◽  
Ivana Křížová ◽  
...  

Nanosized porphyrin-containing metal-organic frameworks (MOFs) attract considerable attention as solid-state photosensitizers for biological applications. In this study, we have for the first time synthesised and characterised phosphinate-based MOF nanoparticles, nanoICR-2 (Inorganic Chemistry Rez). We demonstrate that nanoICR-2 can be decorated with anionic 5,10,15,20-tetrakis(4-R-phosphinatophenyl)porphyrins (R = methyl, isopropyl, phenyl) by utilizing unsaturated metal sites on the nanoparticle surface. The use of these porphyrins allows for superior loading of the nanoparticles when compared with commonly used 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin. The nanoICR-2/porphyrin composites retain part of the free porphyrins photophysical properties, while the photodynamic efficacy is strongly affected by the R substituent at the porphyrin phosphinate groups. Thus, phosphinatophenylporphyrin with phenyl substituents has the strongest photodynamic efficacy due to the most efficient cellular uptake.

2020 ◽  
Author(s):  
Adam Sapnik ◽  
Duncan Johnstone ◽  
Sean M. Collins ◽  
Giorgio Divitini ◽  
Alice Bumstead ◽  
...  

<p>Defect engineering is a powerful tool that can be used to tailor the properties of metal–organic frameworks (MOFs). Here, we incorporate defects through ball milling to systematically vary the porosity of the giant pore MOF, MIL-100 (Fe). We show that milling leads to the breaking of metal–linker bonds, generating more coordinatively unsaturated metal sites, and ultimately causes amorphisation. Pair distribution function analysis shows the hierarchical local structure is partially</p><p>retained, even in the amorphised material. We find that the solvent toluene stabilises the MIL-100 (Fe) framework against collapse and leads to a substantial rentention of porosity over the non-stabilised material.</p>


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4230
Author(s):  
Andreas Windischbacher ◽  
Luca Steiner ◽  
Ritesh Haldar ◽  
Christof Wöll ◽  
Egbert Zojer ◽  
...  

In recent years, the photophysical properties of crystalline metal-organic frameworks (MOFs) have become increasingly relevant for their potential application in light-emitting devices, photovoltaics, nonlinear optics and sensing. The availability of high-quality experimental data for such systems makes them ideally suited for a validation of quantum mechanical simulations, aiming at an in-depth atomistic understanding of photophysical phenomena. Here we present a computational DFT study of the absorption and emission characteristics of a Zn-based surface-anchored metal-organic framework (Zn-SURMOF-2) containing anthracenedibenzoic acid (ADB) as linker. Combining band-structure and cluster-based simulations on ADB chromophores in various conformations and aggregation states, we are able to provide a detailed explanation of the experimentally observed photophysical properties of Zn-ADB SURMOF-2: The unexpected (weak) red-shift of the absorption maxima upon incorporating ADB chromophores into SURMOF-2 can be explained by a combination of excitonic coupling effects with conformational changes of the chromophores already in their ground state. As far as the unusually large red-shift of the emission of Zn-ADB SURMOF-2 is concerned, based on our simulations, we attribute it to a modification of the exciton coupling compared to conventional H-aggregates, which results from a relative slip of the centers of neighboring chromophores upon incorporation in Zn-ADB SURMOF-2.


2019 ◽  
Vol 10 (18) ◽  
pp. 2263-2272 ◽  
Author(s):  
Huaizhi Liu ◽  
Hao Peng ◽  
Yumeng Xin ◽  
Jiuyang Zhang

We reported for the first time using metal–organic framework (MOF) nanoparticles as effective nanofillers to significantly enhance the mechanical performance of hydrogels. The MOF hydrogels have been developed for drug delivery materials with high loading capacity and much extended drug releasing profiles.


2019 ◽  
Vol 7 (25) ◽  
pp. 15190-15197
Author(s):  
Jun-Ho Park ◽  
Kwangjin Park ◽  
Dongwook Han ◽  
Dong-Hee Yeon ◽  
Heechul Jung ◽  
...  

We describe for the first time molecular rearrangements in a highly stable and porous Ni-rich layered oxide cathode material (LiNi0.80Co0.15Mn0.05O2, Ni-rich NCM) using a thermally reactive, Co-embedded metal–organic framework (MOF).


2016 ◽  
Vol 52 (87) ◽  
pp. 12810-12812 ◽  
Author(s):  
Zhen Zhang ◽  
Yongling An ◽  
Xiaoyan Xu ◽  
Chenglong Dong ◽  
Jinkui Feng ◽  
...  

Graphene@nitrogen doped carbon@ultrafine TiO2 nanoparticles (G-NC@TiO2) with porous structure are obtained through annealing the precursor of graphene oxide/metal–organic frameworks (MOFs) for the first time.


IUCrJ ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 85-95 ◽  
Author(s):  
Sujuan Wang ◽  
Zhang-Wen Wei ◽  
Jianyong Zhang ◽  
Long Jiang ◽  
Dingxin Liu ◽  
...  

Metal–organic frameworks with highly ordered porosity have been studied extensively. In this paper, the effect of framework (pore) disorder on the gas sorption of azole-based isoreticular Cu(II) MOFs with rtl topology and characteristic 1D tubular pore channels is investigated for the first time. In contrast to other isoreticular rtl metal–organic frameworks, the Cu(II) metal–organic framework based on 5-(1H-imidazol-1-yl)isophthalate acid has a crystallographically identifiable disordered framework without open N-donor sites. The framework provides a unique example for investigating the effect of pore disorder on gas sorption that can be systematically evaluated. It exhibits remarkable temperature-dependent hysteretic CO2 sorption up to room temperature, and shows selectivity of CO2 over H2, CH4 and N2 at ambient temperature. The unique property of the framework is its disordered structure featuring distorted 1D tubular channels and DMF-guest-remediated defects. The results imply that structural disorder (defects) may play an important role in the modification of the performance of the material.


Author(s):  
Franziska Drache ◽  
Volodymyr Bon ◽  
Irena Senkovska ◽  
Jürgen Getzschmann ◽  
Stefan Kaskel

The reaction of ZrCl 4 and 2,5-thiophenedicarboxylic acid (H 2 tdc) in the presence of trifluoroacetic acid (Htfa) as modulator results in the formation of the new metal–organic framework (MOF) named DUT-126 (DUT = Dresden University of Technology). The nature and concentration of modulators are found to be decisive synthetic parameters affecting the topology of the formed product. DUT-126 ( hbr ) extends the series of polymorphs differing in topology, namely DUT-67 ( reo ), DUT-68 ( bon ) and DUT-69 ( bct ) to four, where DUT-67 and DUT-68 show the same eight-connected secondary building units as in DUT-126. In DUT-126, linker molecules have a peculiar orientation, resulting in hbr topology, which is described for the first time in this work for MOFs. DUT-126 contains three pore types, including two micropores surrounding mesoporous channels. DUT-126 is stable against hydrolysis and features permanent porosity with a specific surface area of 1297 m 2  g −1 and a total pore volume of 0.48 cm 3  g −1 , calculated from the nitrogen physisorption isotherm measured at 77 K. This article is part of the themed issue ‘Coordination polymers and metal–organic frameworks: materials by design’.


2019 ◽  
Vol 55 (18) ◽  
pp. 2692-2695 ◽  
Author(s):  
Xinyan Jiao ◽  
Qingli Hao ◽  
Xifeng Xia ◽  
Zongdeng Wu ◽  
Wu Lei

For the first time, M-Nb2O5@C/rGO composites are fabricated by annealing the precursor of GO supported Nb-metal organic frameworks.


RSC Advances ◽  
2015 ◽  
Vol 5 (14) ◽  
pp. 10707-10715 ◽  
Author(s):  
Li He ◽  
Ludovic F. Dumée ◽  
Dan Liu ◽  
Leonora Velleman ◽  
Fenghua She ◽  
...  

In this study, we demonstrate for the first time the successful fabrication of well-dispersed ultrafine silver nanoparticles inside metal–organic frameworks through a single step gamma irradiation at room temperature.


Author(s):  
Rui Zeng ◽  
Tingting He ◽  
Lu Lu ◽  
Ke Li ◽  
Zhong Luo ◽  
...  

Synergistic therapy, such as chemo-photodynamic therapy, has been arousing because of its efficiency against cancers. Although the metal-organic frameworks have been widely studied in the field of drug delivery, the...


Sign in / Sign up

Export Citation Format

Share Document