Crystal and molecular structures of boldenone and four boldenone steroid esters

2019 ◽  
Vol 234 (10) ◽  
pp. 671-683 ◽  
Author(s):  
Alexandru Turza ◽  
Maria O. Miclăuș ◽  
Aurel Pop ◽  
Gheorghe Borodi

Abstract Androsta-1,4-dien-17β-ol-3-one, also known as boldenone, is an anabolic-androgenic steroid derived from testosterone. The crystal structures of boldenone base, boldenone acetate, boldenone propionate, boldenone cypionate and a boldenone acetate polymorph obtained by high throughput screening were investigated. Hirshfeld surfaces and fingerprint plots breakdown revealed that the molecular packing in the crystals are driven by dominant H⋯H intermolecular contacts, followed by O⋯H/H⋯O contacts and to a lesser degree C⋯H/H⋯C contacts. The steroid skeleton rings, for all the reported compounds, adopt the following conformation: planar in A, chair in B and C, whereas C(13) envelope conformations are found for the five-membered D rings. The total lattice energies were calculated as a sum of four terms (Coulombic, polarization, dispersion, repulsion).

Author(s):  
Rapidah Mohamad ◽  
Normah Awang ◽  
Nurul Farahana Kamaludin ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The crystal and molecular structures of two triphenyltin dithiocarbamate compounds, viz. [Sn(C6H5)3(C8H16NS2)], (I), and [Sn(C6H5)3(C10H12NS2)], (II), are described. The dithiocarbamate ligand in each molecule coordinates in an asymmetric fashion resulting in heavily distorted tetrahedral C3S coordination geometries for the Sn atoms, with the distortions traced to the close approach of the non-coordinating thione-S atom. The molecular packing in both compounds features C—H...π(Sn-phenyl) interactions. In (I), the donors are Sn-phenyl-C—H groups leading to centrosymmetric aggregates, while in (II), the donors are both Sn-phenyl-C—H and methyl-C—H groups leading to supramolecular chains propagating along the b axis. The identified aggregates assemble into their respective crystals with no directional interactions between them. An analysis of the Hirshfeld surfaces show distinctive patterns, but an overwhelming predominance (>99% in each case) of H...H, C...H/H...C and S...H/H...S contacts on the respective Hirshfeld surface.


1981 ◽  
Vol 34 (10) ◽  
pp. 2139 ◽  
Author(s):  
AJ Finney ◽  
MA Hitchman ◽  
CL Raston ◽  
GL Rowbottom ◽  
AH White

The preparation of a series of novel compounds of general formula [Ni5L4(NO2)8(OH)2] formed by ethane-1,2-diamine or one of five N-substituted ethane-1,2-diamines (L) is described. The crystal and molecular structures of the ethane-1,2-diamine, N,N'-diethylethane-1,2-diamine and N,N-dimethylethane-1,2-diamine complexes are reported. Each compound contains a planar, pentameric arrangement of nickel(II) ions, linked by bridging hydroxide and nitrite ligands. The details of the nitrite bridges differ among the complexes, causing differences in their electronic and infrared spectra. The structural variations are probably caused by the differing steric requirements of the amine substituents.


2014 ◽  
Vol 70 (a1) ◽  
pp. C708-C708
Author(s):  
Cho Yeow Koh ◽  
Jasmine Nguyen ◽  
Sayaka Shibata ◽  
Zhongsheng Zhang ◽  
Ranae Ranade ◽  
...  

Infection by the protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, commonly known as sleeping sickness. The disease is fatal without treatment; yet, current therapeutic options for the disease are inadequate due to toxicity, difficulty in administration and emerging resistance. Therefore, methionyl-tRNA synthetase of T. brucei (TbMetRS) is targeted for the development of new antitrypanosomal drugs. We have recently completed a high-throughput screening campaign against TbMetRS using a 364,131 compounds library in The Scripps Research Institute Molecular Screening Center. Here we outline our strategy to integrate the power of crystal structures with high-throughput screening in a drug discovery project. We applied the rapid crystal soaking procedure to obtain structures of TbMetRS in complex with inhibitors reported earlier[1] to approximately 70 high-throughput screening hits. This resulted in more than 20 crystal structures of TbMetRS·hit complexes. These hits cover a large diversity of chemical structures with IC50 values between 200 nM and 10 µM. Based on the solved structures and existing knowledge drawn from other in-house inhibitors, the IC50 value of the most promising hit has been improved. Further development of the compounds into potent TbMetRS inhibitors with desirable pharmacokinetic properties is on-going and will continue to benefit from information derived from crystal structures.


1985 ◽  
Vol 38 (8) ◽  
pp. 1243 ◽  
Author(s):  
JC Dyason ◽  
LM Engelhardt ◽  
C Pakawatchai ◽  
PC Healy ◽  
AH White

The crystal structures of the title compounds have been determined by single-crystal X-ray diffraction methods at 295 K. Crystal data for (PPh3)2CuBr2Cu(PPh3) (1) show that the crystals are iso-morphous with the previously studied chloro analogue, being monoclinic, P21/c, a 19.390(8), b 9.912(5), c 26.979(9) Ǻ, β 112,33(3)°; R 0.043 for No 3444. Cu( trigonal )- P;Br respectively are 2.191(3); 2.409(2), 2.364(2) Ǻ. Cu(tetrahedral)- P;Br respectively are 2.241(3), 2.249(3); 2.550(2), 2.571(2) Ǻ. Crystals of 'step' [PPh3CuBr]4 (2) are isomorphous with the solvated bromo and unsolvated iodo analogues, being monoclinic, C2/c, a 25.687(10), b 16.084(7), c 17.815(9) Ǻ, β 110.92(3)°; R 0.072 for No 3055. Cu( trigonal )- P;Br respectively are 2.206(5); 2.371(3), 2.427(2) Ǻ. Cu(tetrahedral)- P;Br are 2.207(4); 2.446(2), 2.676(3), 2.515(3) Ǻ.


1981 ◽  
Vol 34 (10) ◽  
pp. 2095 ◽  
Author(s):  
AJ Finney ◽  
MA Hitchman ◽  
CL Raston ◽  
GL Rowbottom ◽  
BW Skelton ◽  
...  

The crystal and molecular structures of the compounds [Ni(py)4(ONO)2],2py, [Ni(γmpy),(ONO)2] and [Ni(prz)4(ONO)2] are reported.�All three are trans nitrito complexes, the pyridine (py) compound containing two pyridine molecules of solvation. The aromatic rings in the first two complexes adopt 'paddle wheel' conformations with pitch angles varying between 40 and 70�. The nitrite ions are positioned so as to minimize repulsive interactions with the amines, and it seems likely that these groups bond through oxygen rather than nitrogen because this allows a lesser degree of interligand steric interference. The amine rings in [Ni(prz)4(ONO)2] are orthogonal to the plane containing the nickel and coordinated pyrazole nitrogen atoms; the nitrito groups are disordered between two inequivalent positions, each of which involves hydrogen bonding with the pyrazole NH groups. The nitrite infrared frequencies are similar to those observed for other nickel(II) nitrito complexes except that the antisymmetric NO stretching mode of one of the groups in the pyrazole complex is much lower in energy than expected, being in the range normally associated with a nitrogen-bonded or chelated nitrite group. It is suggested that this deviation may be caused by the hydrogen bonding in the complex. The electronic spectra of the compounds yield 10Dq values of 9100 and 8500 cm-1 for the nitrite ligands in [Ni(py)4(ONO)2] and Ni(prz)4(ONO)2], respectively, placing the nitrito group towards the weaker end of the spectro-chemical series.


2021 ◽  
Author(s):  
Adarsh Kalikadien ◽  
Evgeny A. Pidko ◽  
Vivek Sinha

<div>Local chemical space exploration of an experimentally synthesized material can be done by making slight structural</div><div>variations of the synthesized material. This generation of many molecular structures with reasonable quality,</div><div>that resemble an existing (chemical) purposeful material, is needed for high-throughput screening purposes in</div><div>material design. Large databases of geometry and chemical properties of transition metal complexes are not</div><div>readily available, although these complexes are widely used in homogeneous catalysis. A Python-based workflow,</div><div>ChemSpaX, that is aimed at automating local chemical space exploration for any type of molecule, is introduced.</div><div>The overall computational workflow of ChemSpaX is explained in more detail. ChemSpaX uses 3D information,</div><div>to place functional groups on an input structure. For example, the input structure can be a catalyst for which one</div><div>wants to use high-throughput screening to investigate if the catalytic activity can be improved. The newly placed</div><div>substituents are optimized using a computationally cheap force-field optimization method. After placement of</div><div>new substituents, higher level optimizations using xTB or DFT instead of force-field optimization are also possible</div><div>in the current workflow. In representative applications of ChemSpaX, it is shown that the structures generated by</div><div>ChemSpaX have a reasonable quality for usage in high-throughput screening applications. Representative applications</div><div>of ChemSpaX are shown by investigating various adducts on functionalized Mn-based pincer complexes,</div><div>hydrogenation of Ru-based pincer complexes, functionalization of cobalt porphyrin complexes and functionalization</div><div>of a bipyridyl functionalized cobalt-porphyrin trapped in a M2L4 type cage complex. Descriptors such as</div><div>the Gibbs free energy of reaction and HOMO-LUMO gap, that can be used in data-driven design and discovery</div><div>of catalysts, were selected and studied in more detail for the selected use cases. The relatively fast GFN2-xTB</div><div>method was used to calculate these descriptors and a comparison was done against DFT calculated descriptors.</div><div>ChemSpaX is open-source and aims to bolster the efforts of the scientific community towards data-driven material</div><div>discovery.</div>


1987 ◽  
Vol 40 (5) ◽  
pp. 907 ◽  
Author(s):  
GB Deacon ◽  
BM Gatehouse ◽  
SN Platts ◽  
DL Wilkinson

The crystal structures of tris (η5-cyclopentadienyl) (pyridine) samarium(III), monoclinic, space group P21/c, a 10.906(4), b 8.636(2), c 17.825(3) �, β 96.44(2)�, Z 4, R 0.027 and Rw 0.032 for 3619 'observed' reflections, and tris (η5-cyclopentadienyl)(pyridine)neodymium(III), monoclinic, space group P21 / c, a 14-206(4), b 8.619(2), c 15.190(7) �, β 107.38(2)�, Z 4, R 0.035 and R, 0.039 for 2677 'observed' reflections have been determined. Both compounds have pseudotetrahedral geometry with a coordination number of 10 for the lanthanoid metal but there is a difference in the coordination of pyridine and in unit cell packing between the two structures.


2013 ◽  
Vol 68 (9) ◽  
pp. 993-999 ◽  
Author(s):  
Xiuli Wu ◽  
Rufei Ye ◽  
Ai-Quan Jia ◽  
Qun Chen ◽  
Qian-Feng Zhang

Treatment of Ru(acac)3 with 2-cyano-pyridine and 3,5-dimethyl-pyridine in the presence of zinc dust as reducing agent in refluxing THF afforded the ruthenium(II) complexes cis-[RuII(acac)2(2- CN-py)2] (1) and cis-[RuII(acac)2(3,5-Me2-py)2] (2), respectively. Interaction of Ru(acac)3 with 3- Me-pyridine and 3,5-Me2-pyridine in the presence of Br2 in refluxing THF gave the ruthenium(III) complexes [RuIII(acac)Br2(3-Me-py)2] (3) and [RuIII(acac)Br2(3,5-Me2-py)2] (4), respectively. The four complexes have been spectroscopically and electrochemically characterized, and their crystal and molecular structures have been established by X-ray crystallography


1988 ◽  
Vol 41 (7) ◽  
pp. 1117 ◽  
Author(s):  
BF Abrahams ◽  
BF Hoskins ◽  
ERT Tiekink ◽  
G Winter

The crystal structures of Ni(S2COCH2CH2OCH3)2 and Cd (S2COCH2CH2OCH3)2 have been determined. Crystals Ni(S2COCH2CH2OCH3)2 are orthorhombic, Pbca , with a 7.852(1), b 7.126(2), c 24.963(4)Ǻ, Z 4. Crystals of Cd (S2COCH2CH2OCH3)2 are monoclinic, P21/c, with a 12.712(2), b 4.215(1), c 13.400(2)Ǻ, β 104.60(1)°, Z 2. In both structures the central metal atom is coordinated by the sulfur atoms in a planar arrangement, an unexpected observation for the cadmium compound.


1977 ◽  
Vol 32 (12) ◽  
pp. 1416-1420 ◽  
Author(s):  
Omar Jabay ◽  
Hans Pritzkow ◽  
Jochen Jander

The crystal and molecular structures of N-bromobenzamide (NBB), N-bromosuccinimide (NBS), and N,N-dibromobenzenesulfonamide (NBBS) were determined by X-ray structure analysis. The nitrogen atoms in NBB and NBS have a trigonal planar coordination (sp2) and the N—Br distances lie in the same range (1.82 A, 1.84 A). The N—Br distance in NBBS, where the nitrogen atom is sp3-hybridized, is somewhat longer (1.88 A). In these structures the molecules are connected by O···H—N (NBB), O···Br—N (NBS) or N···Br—N (NBBS) intermolecular bonds forming endless chains; positivated hydrogen atoms or, in case that they are absent, positivated bromine atoms act as electron acceptors with oxygen or sp3- hybridized nitrogen atoms. These results suggest, that in solid nitrogen tribromide, the crystal structure of which cannot be determined, the nitrogen atoms will be sp3-hybridized and intermolecular contacts via N—Br···N will occur.


Sign in / Sign up

Export Citation Format

Share Document