Barium Exhaust Spectrum during the Expansion of Combustion Products through a Nozzle into Vacuum

1971 ◽  
Vol 26 (7) ◽  
pp. 1147-1155 ◽  
Author(s):  
Cristiano Batalli-Cosmovici ◽  
Karl-Wolfgang Michel

AbstractThe emission spectrum from a two-phase nozzle jet, consisting of combustion products of Ba and CuO, revealed that non-equilibrium amounts of excited and ionized Ba atoms occur only during the nozzle starting transient. Traces of BaO-and Cu2-molecules could be identified in the cold outer parts of the jet. The particle temperature near the nozzle, derived from novel measurements of apparent color and brightness temperature, confirms LTE calculations if the vaporization of excess Ba is taken to be a fast process.

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5063
Author(s):  
Norbert Zöbinger ◽  
Thorsten Schweizer ◽  
Thomas Lauer ◽  
Heiko Kubach ◽  
Thomas Koch

The root cause of the initial low-speed pre-ignition (LSPI) is not yet clarified. The literature data suggest that a two-phase phenomenon is most likely triggering the unpredictable premature ignitions in highly boosted spark-ignition engines. However, there are different hypotheses regarding the actual initiator, whether it is a detached liquid oil-fuel droplet or a solid-like particle from deposits. Therefore, the present work investigates the possibility of oil droplet-induced pre-ignitions using a modern downsized engine with minimally invasive endoscopic optical accessibility incorporating in-cylinder lubrication oil detection via light-induced fluorescence. This setup enables the differentiation between liquid and solid particles. Furthermore, the potential of hot solid particles to initiate an ignition under engine-relevant conditions is analyzed numerically. To do so, the particle is generalized as a hot surface transferring heat to the reactive ambient gas phase. The gas-phase reactivity is represented as a TRF/air mixture based on RON/MON specifications of the investigated fuel. The chemical processes are predicted using a semi-detailed reaction mechanism, including 137 species and 633 reactions in a 2D CFD simulation framework. In the optical experiments, no evidence of a liquid oil droplet-induced pre-ignition could be found. Nevertheless, all observed pre-ignitions had a history of flying light-emitting objects. There are strong hints towards solid-like deposit LSPI initiation. The application of the numerical methodology to mean in-cylinder conditions of an LSPI prone engine operation point reveals that particles below 1000 K are not able to initiate a pre-ignition. A sensitivity analysis of the thermodynamic boundary conditions showed that the particle temperature is the most decisive parameter on the calculated ignition delay time.


2012 ◽  
Vol 152-154 ◽  
pp. 883-888
Author(s):  
Xiang Yu Zhang ◽  
Guo Qiang He ◽  
Pei Jin Liu ◽  
Jiang Li

Accurate information on heat transfer data of combustion products in the solid rocket motor chamber is a crucial prerequisite for the engine thermal protection. A measurement technique was well developed to acquire steady-state heat flux data of two-phase flow and was used successfully in the hostile environment. Experimental heat flux measurement has been obtained with an innovative designed instrument by simulating the flow field of complex charging configuration. The total heat flux of combustion products in the chamber was brought away by the coolant and calculated by its enthalpy rise in this device. The data could be used to analyze the heat transfer phenomena in SRMs and provide boundary condition for establishing insulation erosion model.


Sign in / Sign up

Export Citation Format

Share Document