Riemann - Cartan Geometry of Trivializable Gauge Fields

1989 ◽  
Vol 44 (3) ◽  
pp. 222-238 ◽  
Author(s):  
M. Mattes ◽  
M. Sorg

A Riemann-Cartan structure can be associated to any SO (4) trivializable gauge field. Under certain integrability conditions, this non-Riemannian geometry may be replaced by a strictly Riemannian one. The Yang-Mills equations guarantee the existence of such a Riemannian structure. The general SO(4) trivializable solution for the SO(3) Yang-Mills equations is discussed within the geometric approach.

2017 ◽  
Vol 32 (06n07) ◽  
pp. 1750031
Author(s):  
Luiz C. L. Botelho

We study and clarify in a reduced dynamical model for [Formula: see text] called Bollini–Giambiagi model and defined by constant gauge fields Yang–Mills path integral several concepts on the validity of string representations on [Formula: see text] and the confinement problem.


1991 ◽  
Vol 46 (8) ◽  
pp. 655-668
Author(s):  
T. Heck ◽  
M. Sorg

AbstractThe geodesic problem is studied for a Riemannian structure, which is generated by an SO(4) trivializable gauge field. The topological and elliptic geometric defects of such a structure act as attractors for the geodesic curves


2014 ◽  
Vol 11 (03) ◽  
pp. 1450013 ◽  
Author(s):  
Carlos Castro

An octonionic ternary gauge field theory is explicitly constructed based on a ternary-bracket defined earlier by Yamazaki. The ternary infinitesimal gauge transformations do obey the key closure relations [δ1, δ2] = δ3. An invariant action for the octonionic-valued gauge fields is displayed after solving the previous problems in formulating a nonassociative octonionic ternary gauge field theory. These octonionic ternary gauge field theories constructed here deserve further investigation. In particular, to study their relation to Yang–Mills theories based on the G2 group which is the automorphism group of the octonions and their relevance to noncommutative and nonassociative geometry.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lars Andersson ◽  
András László ◽  
Błażej Ruba

Abstract In the classic Coleman-Mandula no-go theorem which prohibits the unification of internal and spacetime symmetries, the assumption of the existence of a positive definite invariant scalar product on the Lie algebra of the internal group is essential. If one instead allows the scalar product to be positive semi-definite, this opens new possibilities for unification of gauge and spacetime symmetries. It follows from theorems on the structure of Lie algebras, that in the case of unified symmetries, the degenerate directions of the positive semi-definite invariant scalar product have to correspond to local symmetries with nilpotent generators. In this paper we construct a workable minimal toy model making use of this mechanism: it admits unified local symmetries having a compact (U(1)) component, a Lorentz (SL(2, ℂ)) component, and a nilpotent component gluing these together. The construction is such that the full unified symmetry group acts locally and faithfully on the matter field sector, whereas the gauge fields which would correspond to the nilpotent generators can be transformed out from the theory, leaving gauge fields only with compact charges. It is shown that already the ordinary Dirac equation admits an extremely simple prototype example for the above gauge field elimination mechanism: it has a local symmetry with corresponding eliminable gauge field, related to the dilatation group. The outlined symmetry unification mechanism can be used to by-pass the Coleman-Mandula and related no-go theorems in a way that is fundamentally different from supersymmetry. In particular, the mechanism avoids invocation of super-coordinates or extra dimensions for the underlying spacetime manifold.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
L. Borsten ◽  
I. Jubb ◽  
V. Makwana ◽  
S. Nagy

Abstract A definition of a convolution of tensor fields on group manifolds is given, which is then generalised to generic homogeneous spaces. This is applied to the product of gauge fields in the context of ‘gravity = gauge × gauge’. In particular, it is shown that the linear Becchi-Rouet-Stora-Tyutin (BRST) gauge transformations of two Yang-Mills gauge fields generate the linear BRST diffeomorphism transformations of the graviton. This facilitates the definition of the ‘gauge × gauge’ convolution product on, for example, the static Einstein universe, and more generally for ultrastatic spacetimes with compact spatial slices.


1994 ◽  
Vol 09 (40) ◽  
pp. 3731-3739 ◽  
Author(s):  
GEORGE LAVRELASHVILI

We discuss the properties and interpretation of a discrete sequence of a static spherically symmetric solutions of the Yang-Mills dilaton theory. This sequence is parametrized by the number of zeros, n, of a component of the gauge field potential. It is demonstrated that solutions with odd n possess all the properties of the sphaleron. It is shown that there are normalizable fermion zero modes in the background of these solutions. The question of instability is critically analyzed.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


Sign in / Sign up

Export Citation Format

Share Document