Self-Diffusion and Reorientation of Methylammonium Ions in (CH3NH3)2ZnCl4 Crystals as Studied by 1H-NMR

1989 ◽  
Vol 44 (8) ◽  
pp. 741-746 ◽  
Author(s):  
Hiroyuki Ishida ◽  
Tadashi Iwachido ◽  
Naomi Hayama ◽  
Ryuichi Ikeda ◽  
Mifune Terashima ◽  
...  

Abstract Differential thermal analysis, differential scanning calorimetry, and measurements of the 1H spin-lattice relaxation times and second moments of 1H-NMR absorptions were performed on methylammonium tetrachlorozincate (II) crystals over a wide temperature range. A solid-solid phase transition was located at 477 K. From the 1H-NMR experiments it was found that the cations undergo overall reorientation as well as three dimensional translational self-diffusion in the high-temperature phase. In the low-temperature phase, a 120° reorientational motion of the CH3 and NH3+ groups of the cation about its C-N bond axis was detected. The parameters for the motional modes of the cations in the crystal were evaluated from the analysis of the 1H-NMR experimental results.

1990 ◽  
Vol 45 (7) ◽  
pp. 923-927
Author(s):  
Hiroyuki Ishida ◽  
Kentaro Takagi ◽  
Tadashi Iwachido

AbstractMeasurements of the 1H spin-lattice relaxation time T1, the linewidth parameter T*2the second moment of 1H NMR absorption, differential thermal analysis, and differential scanning calorimetry were performed on methylammonium tetrabromozincate(II) crystals from 58 to above 500 K. A solid-solid phase transition was located at 456 K. In the room temperature phase, 120° reorientational jumps of CH3 and NH3+ groups in the cation about its C -N bond axis were detected. In the high-temperature phase, the cations undergo overall reorientation as well as translational self-diffusion. The activation energy for the cationic self-diffusion was evaluated to be 18 kJ mol-1 .


1985 ◽  
Vol 40 (4) ◽  
pp. 347-354
Author(s):  
Shin-ichi Fukada ◽  
Ryuichi Ikeda ◽  
Daiyu Nakamura

The temperature variations of 1H NMR spin-lattice relaxation times and 1H NMR second moments in n-C4H9NH3I and its N-deuterated analog were studied in a wide range of temperatures above 77 K. DTA experiments revealed a solid-solid phase transition between room and low temperature phases taking place at 268 K for the former salt and at 267 K for the latter. For rapidly cooled ( ≳ 2 Kmin-1 ) samples, another phase transition possibly between substable low temperature phases was found at ca. 210 K for the former and ca. 205 K for the latter. The transition entropy observed at 268 K was 33 J K-1 mol-1. This is much larger than the melting entropy (16 J K-1 mol-1), suggesting that butylammonium ions obtain their motional freedom mostly at the phase transition. In the low temperature phase of n-C4H9NH3I, the CH3 and NH3+ groups perform C3 reorientation about their respective symmetry axes with the activation energies 10.4 and 26.8kJmol-1, respectively. The rapidly cooled sample showed two T1 components attributable to the stable and substable low temperature phases indicating the coexistence of both phases. In the room temperature phase, the cations rotate rapidly about their long axes and partly conformational disorder of the alkyl chains takes place. The mechanism of the phase transitions is discussed.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 1190-1192 ◽  
Author(s):  
Hiroyuki Ishida ◽  
Kentaro Takagi ◽  
Mifune Terashima ◽  
Daiyu Nakamura

Abstract The 1H spin-lattice relaxation time, linewidth, second moment of 1H NMR absorption, differen-tial thermal analysis, and differential scanning calorimetry of methylammonium tetrabromocado-mate(II) crystals were studied. A new solid phase was found between 482 K and the melting point (493 K). The 1H NMR measurements revealed the presence of overall reorientation of methyl-ammonium cations in this phase. In the room temperature phase, 120° reorientational jumps of the CH3 and NH3+ groups were detected.


1976 ◽  
Vol 54 (21) ◽  
pp. 3453-3457 ◽  
Author(s):  
John A. Ripmeester

The solid pyridinium chloride, bromide, and iodide salts were studied using 1H nuclear magnetic resonance and differential scanning calorimetry. Phase transitions were observed at 345 K for the chloride, 269 K for the bromide, and 247 K for the iodide. Well below each transition, the pyridinium ions are held rigidly in the crystal lattice, whereas above each transition the ions reorientate rapidly about an axis at right angles to the ring planes. From the temperature dependence of the spin–lattice relaxation times the high temperature phase reorientational activation energies were determined to be 1.55, 2.30, and 4.20 kcal/mol for the chloride, bromide, and iodide, respectively.


1996 ◽  
Vol 74 (8) ◽  
pp. 1437-1446 ◽  
Author(s):  
G.W. Buchanan ◽  
A. Moghimi ◽  
C.I. Ratcliffe

Large-amplitude solid phase molecular motion has been detected in the macrocyclic ring of the title crown either via 13C CPMAS NMR. To study the details of the dynamic processes, two selectively deuterated d4 derivatives have been prepared and examined via 2H NMR as a function of temperature. A phase change occurring around 277 K has been verified by differential scanning calorimetry (DSC) and a model for the motional processes has been developed involving equivalent two-site flips of the CD2 groups. The amplitude of the CD2 motions apparently decreases the closer the group is to the aromatic ring. The influence of KNCS complexation on the 13C CPMAS spectrum and on 13C spin lattice relaxation times in solution has been explored. Key words: macrocyclic ethers, solid phase dynamics.


1995 ◽  
Vol 50 (8) ◽  
pp. 742-748 ◽  
Author(s):  
M. Grottel ◽  
A. Kozak ◽  
Z. Pająk

Abstract Proton and fluorine NMR linewidths, second moments, and spin-lattice relaxation times of polycrystalline [C(NH2)3]2SbF5 and C(NH2)3SbF6 were studied in a wide temperature range. For the pentafluoroantimonate, C3-reorientation of the guanidinium cation and C4-reorientation of the SbF5 anion were revealed and their activation parameters determined. The dynamical inequivalence of the two guanidinium cations was evidenced. For the hexafluoroantimonate, two solid-solid phase transitions were found. In the low temperature phase the guanidinium cation undergoes C3 reorien­ tation while the SbF6 anion reorients isotropically. The respective activation parameters were derived. At high temperatures new ionic plastic phases were evidenced.


1996 ◽  
Vol 51 (5-6) ◽  
pp. 761-768 ◽  
Author(s):  
H. Honda ◽  
M. Kenmotsu ◽  
N. Onoda-Yamamuro ◽  
H. Ohki ◽  
S. Ishimaru ◽  
...  

The temperature dependence of the 15N and 133Cs NMR spin-lattice relaxation times, the 15N spin-spin relaxation time, and the 15N and 133Cs spectra of CsNO2 was observed in the plastic phase (209.2 < T < 673 K (m. p.)) and the low-temperature phase (Phase II). In Phase II we found the NO-2 180°-flip, which could be attributed to the anomalous increase of the heat capacity curve, and determined the activation energy of this motion to be 8.7-11.7 kJ mol-1. The 15N and 133Cs spectra in this phase are inconsistent with the reported crystal structure R3̅m and can be explained by lower crystal symmetry. In the plastic phase we detected a new anionic motion with 11 kJ mol-1 , an isotropic NO-2 reorientation with 8.5-9 kJ mol-1, and ionic self-diffusion with 47 kJ mol-1. The presence of ionic self-diffusion was confirmed by measuring the electrical conductivity.


2000 ◽  
Vol 55 (3-4) ◽  
pp. 412-414 ◽  
Author(s):  
Hiroyuki Ishida

Abstract The reorientation of the tetrahedral complex anion ZnCl42- and the self-diffusion of the cation in (CH3NH3)2ZnCl4 were studied by 1H NMR spin-lattice relaxation time (1H T1) experiments. In the second highest-temperature phase, the temperature dependence of 1H T1 observed at 8.5 MHz could be explained by a magnetic dipolar-electric quadrupolar cross relaxation between 1H and chlorine nuclei, and the activation energy of the anion motion was determined to be 105 kJ mol -1 . In the highest-temperature phase, the activation energy of the self-diffusion of the cation was determined to be 58 kJ mol -1 from the temperature and frequency dependence of 1H T1


1994 ◽  
Vol 49 (1-2) ◽  
pp. 247-252 ◽  
Author(s):  
Motoko Kenmotsu ◽  
Hisashi Honda ◽  
Hiroshi Ohki ◽  
Ryuichi Ikeda ◽  
Tomoki Erata ◽  
...  

AbstractThe spin-lattice relaxation time of 39K NMR observed in the low-temperature phase (T<264.1 K) of KNO2 is explained by the quadrupole mechanism contributed from a newly found NO2- motion. The in-plane C3 reorientation and the overvall NO2 rotation as well as the self-diffusion were shown in the intermediate phase (T ≤ 314.7 K) and the high-temperature plastic phase (T < melting point: 710 K), respectively, by observing 39K and 15N NMR relaxation times and 15N lineshapes.


1996 ◽  
Vol 51 (1-2) ◽  
pp. 83-86
Author(s):  
Hiroyuki Ishida ◽  
Yoshihiro Furukawa

Abstract Spin-lattice relaxation times (T1) and spin-spin relaxation times (T2) of 1H NMR and the electrical conductivity (σ) of trimethylammonium perchlorate were measured in the ionic plastic phase obtainable above 480 K. In this phase, both the cation and anion were revealed to perform self-diffusion. The activation energy (Ea ) of the cationic diffusion was evaluated to be 55 ± 4 and 50 ± 4 kJ mol-1 from 1H T1 and 1H T2 respectively, while Ea of the anionic diffusion was 64 ±3 kJ mol-1 from the electrical conductivity.


Sign in / Sign up

Export Citation Format

Share Document