2H NMR Study of Molecular and Electron Spin Dynamics in Paramagnetic [Co(H2O)6][SiF6]

2000 ◽  
Vol 55 (1-2) ◽  
pp. 173-177
Author(s):  
Takahiro Iijima ◽  
Motohiro Mizuno ◽  
Masahiko Suhara

The temperature dependences of 2H NMR spectra and the spin-lattice relaxation time T\ were measured for [Co(H2O)f,][SiF6]. The variation of the spectrum above room temperature can be explained by the reorientation of [Co(H2O)6]2+ about the C3 axis. The activation energy Ea and the jumping rate at infinite temperature K0 for the three site jump of [Co(H2O)6]2+ were obtained as 82 kJmol-1 and 2x 1017s-1 from the spectral simulation. Below room temperature, the spectral line shape was dominated by the 180° flip of the water molecule. The minimum of T1 caused by the 180° flip of the water molecule was observed at ca. 260 K. The jumping rate of the 180° flip of the water molecule was estimated from the 2H NMR T1 and the spectral simulation. Ea = 38 kJmol-1 and K0 = 6x 1015s-1 for the 180° flip of the water molecule were obtained from T1.

1991 ◽  
Vol 46 (3) ◽  
pp. 265-268 ◽  
Author(s):  
Hiroyuki Ishida ◽  
Syuichi Inada ◽  
Naomi Hayama ◽  
Daiyu Nakamura ◽  
Ryuichi Ikeda

AbstractThe 1H spin-lattice relaxation time (T1) in solid (CD3)3CNH3Cl and (CD3)3CNH3Br was measured above room temperature and the motional parameters for the reorientation of the NH3+ groups were determined. The 1H NMR absorptions measured in the same temperature range for (CH3)3CNH3Cl and (CH3)3CNH3Br indicate the presence of superimposed several cationic motions commonly taking place in both compounds. From X-ray powder patterns taken at room temperature, the bromide was found to be isomorphous with the chloride


2000 ◽  
Vol 55 (3-4) ◽  
pp. 412-414 ◽  
Author(s):  
Hiroyuki Ishida

Abstract The reorientation of the tetrahedral complex anion ZnCl42- and the self-diffusion of the cation in (CH3NH3)2ZnCl4 were studied by 1H NMR spin-lattice relaxation time (1H T1) experiments. In the second highest-temperature phase, the temperature dependence of 1H T1 observed at 8.5 MHz could be explained by a magnetic dipolar-electric quadrupolar cross relaxation between 1H and chlorine nuclei, and the activation energy of the anion motion was determined to be 105 kJ mol -1 . In the highest-temperature phase, the activation energy of the self-diffusion of the cation was determined to be 58 kJ mol -1 from the temperature and frequency dependence of 1H T1


2016 ◽  
Vol 18 (27) ◽  
pp. 18555-18562 ◽  
Author(s):  
Tatsuya Miyatou ◽  
Ryutaro Ohashi ◽  
Tomonori Ida ◽  
Shigeharu Kittaka ◽  
Motohiro Mizuno

Thermodynamic and dynamic properties of water confined in mesoporous silica glass SBA-16 were investigated by DSC and 1,2H NMR spectroscopy and 2H NMR spin–lattice relaxation time as a function of pore size.


1990 ◽  
Vol 45 (9-10) ◽  
pp. 1190-1192 ◽  
Author(s):  
Hiroyuki Ishida ◽  
Kentaro Takagi ◽  
Mifune Terashima ◽  
Daiyu Nakamura

Abstract The 1H spin-lattice relaxation time, linewidth, second moment of 1H NMR absorption, differen-tial thermal analysis, and differential scanning calorimetry of methylammonium tetrabromocado-mate(II) crystals were studied. A new solid phase was found between 482 K and the melting point (493 K). The 1H NMR measurements revealed the presence of overall reorientation of methyl-ammonium cations in this phase. In the room temperature phase, 120° reorientational jumps of the CH3 and NH3+ groups were detected.


1989 ◽  
Vol 44 (11) ◽  
pp. 1122-1126 ◽  
Author(s):  
Yoshihiro Furukawa ◽  
Daiyu Nakamura

The temperature dependences of the 1H spin-lattice relaxation time T1, the linewidth parameter T2*. and the second moment M2 of 1H NMR absorption were measured for solid (CH3NH3)PbX3 (X: CI. Br). In the room-temperature cubic phases of both salts, and also in the high-temperature tetragonal phase of (CH3NH3)PbBr3, the cations undergo rapid overall rotation or reorientation. In the lowest-temperature phase of both salts the orientation of the cations is fixed but rapid C3 reorientation of the CH3 and NH+3 groups of the cations about their C - N bond axes takes place. From the M2 measurements, a precessional motion of the cations in the intermediate-temperature phase of both complexes is suggested. Above room temperature, 1H T1 of both salts can be explained by assuming spin-rotational relaxation operative due to the rapid rotation of the cations. An anomalous behavior of 1H T1, attributable to cross relaxation between 1H and 81Br nuclei, was detected for (CH3NH3) PbBr3 when T1 was measured at 42 MHz


2003 ◽  
Vol 58 (11) ◽  
pp. 638-644 ◽  
Author(s):  
M. Grottel ◽  
A. Pajzderska ◽  
J. Wasicki

The proton NMR second moment and spin-lattice relaxation time have been studied for polycrystalline inclusion compounds of thiourea pyridinium chloride, bromide, iodide and their perdeuterated analogues in a wide temperature range. The pyridinium cation reorientation around the pseudohexagonal C6’ symmetry axis over inequivalent barriers and hindered rotation of the thiourea molecule around its C=S bond have been revealed. The activation parameters of the both motions have been found.


1962 ◽  
Vol 40 (8) ◽  
pp. 1027-1035 ◽  
Author(s):  
D. Llewelyn Williams

Measurements of the proton spin–lattice relaxation time using pulse techniques have been made on the hydrogen–nitrogen, hydrogen–neon, and hydrogen–helium systems from room temperature to 60° K. The results are in good agreement with the Oppenheim–Bloom theory and illustrate the importance of the radial distribution of the gas molecules and of diffraction effects associated with the de Broglie wavelength.


1995 ◽  
Vol 50 (8) ◽  
pp. 737-741 ◽  
Author(s):  
Noriaki Okubo ◽  
Mutsuo Igarashi ◽  
Ryozo Yoshizaki

Abstract The 81Br nuclear spin-lattice relaxation time in AlBr3 has been measured between 8 K and room temperature. The result is analyzed using the theory of the Raman process based on covalency. A Debye temperature of 67.6 K and covalency of 0.070 and 0.072 for terminal and 0.022 for bridging bonds are obtained. The correspondence of the latter values to those obtained from the NQR frequencies is low, in contrast to the previously examined compounds.


2004 ◽  
Vol 59 (7-8) ◽  
pp. 505-509 ◽  
Author(s):  
M. Grottela ◽  
A. Kozak ◽  
A. Pajzderska ◽  
W. Szczepański ◽  
J. Wąsicki

The proton NMR second moment and spin-lattice relaxation time have been studied for polycrystalline thiourea pyridinium nitrate inclusion compound and its perdeuderated analogues in a wide temperature range. The reorientation of two dynamically different pyridinium cations around their pseudohexagonal symmetry axis taking place over inequivalent barriers have been revealed in the low-temperature phase. Activation parameters for these motions have been derived. A symmetrization of the potential barriers has been observed at the transition from intermediate to the high temperature phase. The motion of thiourea molecules has been also evidenced, but could not be unambiguously described.


Sign in / Sign up

Export Citation Format

Share Document