scholarly journals Space and Time as a Consequence of Ghirardi-Rimini-Weber Quantum Jumps

2018 ◽  
Vol 73 (10) ◽  
pp. 923-929 ◽  
Author(s):  
Tejinder P. Singh

AbstractThe Ghirardi-Rimini-Weber theory of spontaneous collapse offers a possible resolution of the quantum measurement problem. In this theory, the wave function of a particle spontaneously and repeatedly localises to one or the other random position in space, as a consequence of the hypothesised quantum jumps. In between jumps, the wave function undergoes the usual Schrödinger evolution. In the present paper, we suggest that these jumps take place in Hilbert space, with no reference to physical space and a physical three-dimensional space arises as a consequence of localisation of macroscopic objects in the universe. That is, collapse of the wave-function is responsible for the origin of space. We then suggest that similar jumps take place for a hypothetical time operator in Hilbert space and classical time, as we know it emerges from localisation of this time operator, for macroscopic objects. More generally, the jumps are suggested to take place in an operator space-time in Hilbert space, leading to an emergent classical space-time.

2019 ◽  
Vol 74 (2) ◽  
pp. 147-152 ◽  
Author(s):  
Tejinder P. Singh

AbstractWe propose that space-time results from collapse of the wave function of macroscopic objects, in quantum dynamics. We first argue that there ought to exist a formulation of quantum theory which does not refer to classical time. We then propose such a formulation by invoking an operator Minkowski space-time on the Hilbert space. We suggest relativistic spontaneous localisation as the mechanism for recovering classical space-time from the underlying theory. Quantum interference in time could be one possible signature for operator time, and in fact may have been already observed in the laboratory, on attosecond time scales. A possible prediction of our work seems to be that interference in time will not be seen for ‘time slit’ separations significantly larger than 100 attosecond, if the ideas of operator time and relativistic spontaneous localisation are correct.


Author(s):  
Jae-Kwang Hwang

Three-dimensional quantized space model is newly introduced. Quantum mechanics and relativity theory are explained in terms of the warped three-dimensional quantized spaces with the quantum time width (Dt=tq). The energy is newly defined as the 4-dimensional space-time volume of E = cDtDV in the present work. It is shown that the wave function of the quantum mechanics is closely related to the warped quantized space shape with the space time-volume. The quantum entanglement and quantum wave function collapse are explained additionally. The special relativity theory is separated into the energy transition associated with the space-time shape transition of the matter and the momentum transition associated with the space-time location transition. Then, the quantum mechanics and the general relativity theory are about the 4-dimensional space-time volume and the 4-dimensional space-time distance, respectively.


Author(s):  
Alyssa Ney

This chapter proposes a solution to the macro-object problem for wave function realism. This is the problem of how a wave function in a high-dimensional space may come to constitute the low-dimensional, macroscopic objects of our experience. The solution takes place in several stages. First, it is argued that how the wave function’s being invariant under certain transformations may give us reason to regard three-dimensional configurations corresponding symmetries with ontological seriousness. Second it is shown how the wave function may decompose into low-dimensional microscopic parts. Interestingly, this reveals mereological relationships in which parts and wholes inhabit distinct spatial frameworks. Third, it is shown how these parts may come to compose macroscopic objects.


2008 ◽  
Vol 23 (11) ◽  
pp. 797-813 ◽  
Author(s):  
M. D. POLLOCK

The Einstein–Hilbert Lagrangian R is expressed in terms of the chronometrically invariant quantities introduced by Zel'manov for an arbitrary four-dimensional metric gij. The chronometrically invariant three-space is the physical space γαβ = -gαβ+e2ϕ γαγβ, where e 2ϕ = g00 and γα = g0α/g00, and whose determinant is h. The momentum canonically conjugate to γαβ is [Formula: see text], where [Formula: see text] and ∂t≡ e -ϕ∂0 is the chronometrically invariant derivative with respect to time. The Wheeler–DeWitt equation for the wave function Ψ is derived. For a stationary space-time, such as the Kerr metric, παβ vanishes, implying that there is then no dynamics. The most symmetric, chronometrically-invariant space, obtained after setting ϕ = γα = 0, is [Formula: see text], where δαβ is constant and has curvature k. From the Friedmann and Raychaudhuri equations, we find that λ is constant only if k=1 and the source is a perfect fluid of energy-density ρ and pressure p=(γ-1)ρ, with adiabatic index γ=2/3, which is the value for a random ensemble of strings, thus yielding a three-dimensional de Sitter space embedded in four-dimensional space-time. Furthermore, Ψ is only invariant under the time-reversal operator [Formula: see text] if γ=2/(2n-1), where n is a positive integer, the first two values n=1,2 defining the high-temperature and low-temperature limits ρ ~ T±2, respectively, of the heterotic superstring theory, which are thus dual to one another in the sense T↔1/2π2α′T.


Author(s):  
Abdullah Guvendi

We investigate the dynamics of a composite system ([Formula: see text]) consisting of an interacting fermion–antifermion pair in the three-dimensional space–time background generated by a static point source. By considering the interaction between the particles as Dirac oscillator coupling, we analyze the effects of space–time topology on the energy of such a [Formula: see text]. To achieve this, we solve the corresponding form of a two-body Dirac equation (fully-covariant) by assuming the center-of-mass of the particles is at rest and locates at the origin of the spatial geometry. Under this assumption, we arrive at a nonperturbative energy spectrum for the system in question. This spectrum includes spin coupling and depends on the angular deficit parameter [Formula: see text] of the geometric background. This provides a suitable basis to determine the effects of the geometric background on the energy of the [Formula: see text] under consideration. Our results show that such a [Formula: see text] behaves like a single quantum oscillator. Then, we analyze the alterations in the energy levels and discuss the limits of the obtained results. We show that the effects of the geometric background on each energy level are not same and there can be degeneracy in the energy levels for small values of the [Formula: see text].


2014 ◽  
Vol 29 (22) ◽  
pp. 1450112 ◽  
Author(s):  
R. Bufalo

Inspired in discussions presented lately regarding Lorentz-violating interaction terms in B. Charneski, M. Gomes, R. V. Maluf and A. J. da Silva, Phys. Rev. D86, 045003 (2012); R. Casana, M. M. Ferreira Jr., R. V. Maluf and F. E. P. dos Santos, Phys. Lett. B726, 815 (2013); R. Casana, M. M. Ferreira Jr., E. Passos, F. E. P. dos Santos and E. O. Silva, Phys. Rev. D87, 047701 (2013), we propose here a slightly different version for the coupling term. We will consider a modified quantum electrodynamics with violation of Lorentz symmetry defined in a (2+1)-dimensional space–time. We define the Lagrangian density with a Lorentz-violating interaction, where the space–time dimensionality is explicitly taken into account in its definition. The work encompasses an analysis of this model at both zero and finite-temperature, where very interesting features are known to occur due to the space–time dimensionality. With that in mind, we expect that the space–time dimensionality may provide new insights about the radiative generation of higher-derivative terms into the action, implying in a new Lorentz-violating electrodynamics, as well the nonminimal coupling may provide interesting implications on the thermodynamical quantities.


1999 ◽  
Vol 77 (6) ◽  
pp. 427-446
Author(s):  
S B Phillips

A model of a spinning string with an internal coordinate index is proposed and studied. When the action for this model is taken to be diagonal in this internal coordinate space and quantized in the light-cone gauge it is found to be Lorentz covariant in four-dimensional space-time provided that the internal coordinate space is four dimensional.This combination of space-time dimension, D, and internal coordinate space dimension, N, is just one of four possible sets, the other three corresponding to D = 3, 6, and 10, precisely the same values for which it is possible to formulate Yang-Mills theories with simple supersymmetry. By comparing the number of propagating degrees of freedom at the zero-mass level in the open string bosonic and fermionic sectors it is found that a supersymmetric interpretation of this model is possible provided that all physical states in the bosonic sector have even G-parity and the ground-state spin or in the fermionic sector have positive chirality. A possible interpretation of the connection betweenthe N components of each of the D space-time coordinates is presentedon the basis that the space-time coordinates are scalars in the internal coordinate space. This interpretation would appear to be reasonable given the fact that the field variables in the Lagrangian density do not necessarily have to represent physically measurable quantities but can, instead, only represent physically measurable quantities when combined in some manner, the simplest of which being a linear combination. The Lagrangian density simply produces the equations of motion and the constraint equations for the independent variables, only linear combinations of which represent the four dimensions of physical space-time.PACS Nos.: 11.17.+y, 11.10.Qr, 1.30.Cp, 11.30.Pb


Sign in / Sign up

Export Citation Format

Share Document