Pressure induced nodal line semimetal in YH3

2020 ◽  
Vol 75 (11) ◽  
pp. 971-979
Author(s):  
Fei-Hu Liu ◽  
Li-Na Wu ◽  
Ying-Hua Deng ◽  
Wei Fu

AbstractThe electronic structure of yttrium trihydride (YH3) under pressure has been explored by using the first-principle calculation. The existence of semiconductor phase of YH3 is predicted at low pressure with symmetry group $p\overline{3}c1$ (165). In the range of 10–24 GPa, electron- and hole-like bands near the Fermi level are overlapped and form a snake-like nodal ring around Γ point. Different from previous literature (D. Shao, T. Chen, Q. Gu, et al., “Nonsymmorphic symmetry protected node-line semimetal in the trigonal YH3,” Sci. Rep., vol. 8, 2018.; J. Wang, Y. Liu, K.-H. Jin, et al., Phys. Rev. B, vol. 98, p. 201112, 2018), which assumes the band degeneracy is protected by mirror symmetry, we argue that the nodal line is protected by the space inversion symmetry and the time reversal symmetry. For weak spin-orbital coupling (SOC), the fermion modes at the band crossings are real 3D Majorana fermions. This is a typical double charged nodal-line semimetal, meaning that there are two topological invariants of this nodal line: a 1D Berry’s phase and a Z2 monopole charge, which are related to the first and the second Stiefel-Whitney classes of the Berry bundle and can be given by the first-principle calculation. It turns out that the 1D Berry’s phase is nontrivial, but the Z2 monopole charge is trivial. Therefore, this nodal line can shrink to a point and gapped out without breaking the topological constraints.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
I. Marković ◽  
C. A. Hooley ◽  
O. J. Clark ◽  
F. Mazzola ◽  
M. D. Watson ◽  
...  

AbstractBand inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.


2019 ◽  
Vol 125 (9) ◽  
pp. 094302
Author(s):  
H. Li ◽  
H. N. Du ◽  
X. W. He ◽  
Y. Y. Shen ◽  
H. X. Zhang ◽  
...  

2013 ◽  
Vol 652-654 ◽  
pp. 554-558
Author(s):  
Xin Min Min ◽  
Xuchao Wang

The relations between electronic structure and thermoelectric property of misfit layered cobaltite of Ca3Co4O9 and La-doped series are studied from the calculation by density function and discrete variation method (DFT-DVM). The highest valence band (HVB) and the lowest conduction band (LCB) near Fermi level are only mainly from O 2p and Co 3d in Ca2CoO3 layer. Therefore, the semiconductor, or thermoelectric property of Ca3Co4O9 should be mainly from Ca2CoO3 layer, but have no direct relation to the CoO2 layer, which is consistent with that binary oxides hardly have thermoelectric property, but trinary oxide compounds have quite good thermoelectric property. With the amount of La-doped increase, the gap between HVB and LCB firstly decrease, then reaches the minimum, finally increase. The gap affects the thermoelectric property. Therefore, there is a best amount of Na-doped to improve thermoelectric property, which is consistent with the experiment.


2017 ◽  
Vol 896 ◽  
pp. 120-127 ◽  
Author(s):  
Ting Ting Zhou ◽  
Chuan Zhen Huang ◽  
Ming Dong Yi

First-principle calculation is carried out on Al2O3(012)/SiC(310) interface model. It can be concluded from the electronic density and population analysis that Al-C and O-Si located at grain boundary primarily contribute to the interface bonding strength and creep resistance property. The electronic charges in grain boundaries and grains are compared with each other. And the valence electrons are found to be redistributed. The relationship of all kinds of chemical bonds in grains and grain boundary of the interface model is analyzed. Also the toughening mechanism of Al2O3/SiC multi-phase ceramic tool materials is explained in nano-scale.


1992 ◽  
Vol 291 ◽  
Author(s):  
Hideaki Sawada ◽  
Atsushi Nogami ◽  
Wataru Yamada ◽  
Tooru Matsiuniya

ABSTRACTA method of first principle calculation of alloy phase diagram was developed by the combination of first principle energy band calculation, cluster expansion method (CEM) and Monte Carlo (MC) simulation, where the effective multi-body potential energy for the flip test in MC simulation was obtained by the decomposition of the total energy by CEM. This method was applied to Cu-Au binary system. The calculated phase diagram agreed with that of CVM by introducing the dependence of the lattice constant on the concentration of the whole system. Furthermore an attempt of introducing the effect of local lattice relaxation was performed by the consideration of the local concentration. The order-disorder transition temperature became closer to the experimental value by adjustment of the local lattice constant depending on the concentration in the local region consisted of up to the second nearest neighbors of the atom tested for flipping.


Sign in / Sign up

Export Citation Format

Share Document