A basic definition of spin in the new matrix dynamics

2020 ◽  
Vol 75 (11) ◽  
pp. 963-970
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a new matrix dynamics at the Planck scale, building on the theory of trace dynamics. This is a Lagrangian dynamics in which the matrix degrees of freedom are made from Grassmann numbers, and the Lagrangian is trace of a matrix polynomial. Matrices made from even grade elements of the Grassmann algebra are called bosonic, and those made from odd grade elements are called fermionic. In the present article, we provide a basic definition of spin angular momentum in this matrix dynamics, and introduce a bosonic(fermionic) configuration variable conjugate to the spin of a boson(fermion). We then show that at energies below Planck scale, where the matrix dynamics reduces to quantum theory, fermions have half-integer spin (in multiples of Planck’s constant), and bosons have integral spin. We also show that this definition of spin agrees with the conventional understanding of spin in relativistic quantum mechanics. Consequently, we obtain an elementary proof for the spin-statistics connection.

2020 ◽  
Vol 75 (12) ◽  
pp. 1051-1062
Author(s):  
Tejinder P. Singh

AbstractWe have recently proposed a new matrix dynamics at the Planck scale, building on the theory of trace dynamics and Connes noncommutative geometry program. This is a Lagrangian dynamics in which the matrix degrees of freedom are made from Grassmann numbers, and the Lagrangian is trace of a matrix polynomial. Matrices made from even grade elements of the Grassmann algebra are called bosonic, and those made from odd grade elements are called fermionic—together they describe an ‘aikyon’. The Lagrangian of the theory is invariant under global unitary transformations and describes gravity and Yang–Mills fields coupled to fermions. In the present article, we provide a basic definition of spin angular momentum in this matrix dynamics and introduce a bosonic(fermionic) configuration variable conjugate to the spin of a boson(fermion). We then show that at energies below Planck scale, where the matrix dynamics reduces to quantum theory, fermions have half-integer spin (in multiples of Planck’s constant), and bosons have integral spin. We also show that this definition of spin agrees with the conventional understanding of spin in relativistic quantum mechanics. Consequently, we obtain an elementary proof for the spin-statistics connection. We then motivate why an octonionic space is the natural space in which an aikyon evolves. The group of automorphisms in this space is the exceptional Lie group G2 which has 14 generators [could they stand for the 12 vector bosons and two degrees of freedom of the graviton?]. The aikyon also resembles a closed string, and it has been suggested in the literature that 10-D string theory can be represented as a 2-D string in the 8-D octonionic space. From the work of Cohl Furey and others it is known that the Dixon algebra made from the four division algebras [real numbers, complex numbers, quaternions and octonions] can possibly describe the symmetries of the standard model. In the present paper we outline how in our work the Dixon algebra arises naturally and could lead to a unification of gravity with the standard model. From this matrix dynamics, local quantum field theory arises as a low energy limit of this Planck scale dynamics of aikyons, and classical general relativity arises as a consequence of spontaneous localisation of a large number of entangled aikyons. We propose that classical curved space–time and Yang–Mills fields arise from an effective gauging which results from the collection of symmetry groups of the spontaneously localised fermions. Our work suggests that we live in an eight-dimensional octonionic universe, four of these dimensions constitute space–time and the other four constitute the octonionic internal directions on which the standard model forces live.


1991 ◽  
Vol 253 ◽  
Author(s):  
B. L. Gyorffy

The symmetry properties of the Dirac equation, which describes electrons in relativistic quantum mechanics, is rather different from that of the corresponding Schr6dinger equation. Consequently, even when the velocity of light, c, is much larger than the velocity of an electron Vk, with wave vector, k, relativistic effects may be important. For instance, while the exchange interaction is isotropic in non-relativistic quantum mechanics the coupling between spin and orbital degrees of freedom in relativistic quantum mechanics implies that the band structure of a spin polarized metal depends on the orientation of its magnetization with respect to the crystal axis. As a consequence there is a finite set of degenerate directions for which the total energy of the electrons is an absolute minimum. Evidently, the above effect is the principle mechanism of the magneto crystalline anisotropy [1]. The following session will focus on this and other qualitatively new relativistic effects, such as dichroism at x-ray frequencies [2] or Fano effects in photo-emission from non-polarized solids [3].


1995 ◽  
Vol 04 (01) ◽  
pp. 105-113 ◽  
Author(s):  
V. PERVUSHIN ◽  
T. TOWMASJAN

We show that the first principles of quantization and the experience of relativistic quantum mechanics can lead to the definition of observable time in quantum cosmology as a global quantity which coincides with the constrained action of the reduced theory up to the energy factor. The latter is fixed by the correspondence principle once one considers the limit of the “dust filled” Universe. The “global time” interpolates between the proper time for dust dominance and the conformal time for radiation dominance.


1988 ◽  
Vol 03 (05) ◽  
pp. 1235-1261 ◽  
Author(s):  
H. SAZDJIAN

We develop, in the framework of two-particle relativistic quantum mechanics, the formalism needed to describe massless bound state systems and their internal dynamics. It turns out that the dynamics here is two-dimensional, besides the contribution of the spin degrees of freedom, provided by the two space-like transverse components of the relative coordinate four-vector, decomposed in an appropriate light cone basis. This is in contrast with the massive bound state case, where the dynamics is three-dimensional. We also construct the scalar product of the theory. We apply this formalism to several types of composite systems, involving spin-0 bosons and/or spin-1/2 fermions, which produce massless bound states.


1997 ◽  
Vol 12 (01) ◽  
pp. 243-248 ◽  
Author(s):  
Rodolfo P. Martínez Y Romero ◽  
Antonio Del Sol Mesa

We discuss the existence of ambiguities, or anomalies of fermionic nature as we call them, in the quantization of relativistic systems with odd Grassmann degrees of freedom. We propose in this work a way of avoiding such ambiguities in the case of relativistic quantum mechanics, by including the odd degrees of freedom into a generalization of the momentum, in a similar manner to the minimal coupling. We illustrate our results with some examples, including the Dirac oscillator as a typical case of the problems we are dealing with.


2006 ◽  
Vol 21 (06) ◽  
pp. 1333-1340 ◽  
Author(s):  
YOSHINOBU HABARA ◽  
HOLGER B. NIELSEN ◽  
MASAO NINOMIYA

We present an attempt to formulate the supersymmetric and relativistic quantum mechanics in the sense of realizing supersymmetry on the single particle level, by utilizing the equations of motion which is equivalent to the ordinary second quantization of the chiral multiplet. The matrix formulation is used to express the operators such as supersymmetry generators and fields of the chiral multiplets. We realize supersymmetry prior to filling the Dirac sea.


2021 ◽  
pp. 191-206
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

The Klein–Gordon and the Dirac equations are studied as candidates for a relativistic generalisation of the Schrödinger equation. We show that the first is unacceptable because it admits solutions with arbitrarily large negative energy and has no conserved current with positive definite probability density. The Dirac equation on the other hand does have a physically acceptable conserved current, but it too suffers from the presence of negative energy solutions. We show that the latter can be interpreted as describing anti-particles. In either case there is no fully consistent interpretation as a single-particle wave equation and we are led to a formalism admitting an infinite number of degrees of freedom, that is a quantum field theory. We can still use the Dirac equation at low energies when the effects of anti-particles are negligible and we study applications in atomic physics.


Author(s):  
Laurent Baulieu ◽  
John Iliopoulos ◽  
Roland Sénéor

Towards a relativistic quantum mechanics. Klein–Gordon and the problems of the probability current and the negative energy solutions. The Dirac equation and negative energies. P, C, and T symmetries. Positrons. The Schrödinger equation as the non-relativistic limit of relativistic equations. Majorana and Weyl equations. Relativistic corrections in hydrogen-like atoms. The Dirac equation as a quantum system with an infinite number of degrees of freedom.


Sign in / Sign up

Export Citation Format

Share Document