scholarly journals Notizen: Kinetics of the Oxidation of Acetaldehyde by Manganese(III) Sulphate

1974 ◽  
Vol 29 (9-10) ◽  
pp. 691-693 ◽  
Author(s):  
M. S. Murdia ◽  
R. Shanker ◽  
G. V. Bakore

Oxidation of acetaldehyde with manganese(III)- sulphate is first order with respect to acetaldehyde and the oxidant. The rate is independent of acidity (2.0 > [H+] < 5.0 ᴍ and initial [Mn(II)]. Formaldehyde is one of the products of oxidation. Activation parameters for the reaction have been evaluated. The rate of enolisation under similar conditions is less than the rate of oxidation. A mechanism involving a direct attack on the aldehyde by Mn(III) has been suggested.

1992 ◽  
Vol 57 (7) ◽  
pp. 1451-1458 ◽  
Author(s):  
Refat M. Hassan

The kinetics of oxidation of arsenic(III) by hexachloroiridate(IV) at lower acid concentrations and at constant ionic strength of 1.0 mol dm-3 have been investigated spectrophotometrically. A first-order reaction in [IrCl62-] and fractional order with respect to arsenic(III) have been observed. A kinetic evidence for the formation of an intermediate complex between the hydrolyzed arsenic(III) species and the oxidant was presented. The results showed that decreasing the [H+] is accompanied by an appreciable acceleration of the rate of oxidation. The activation parameters have been evaluated and a mechanism consistent with the kinetic results was suggested.


Author(s):  
Seplapatty Kalimuthu Periyasamy ◽  
H. Satham Hussain ◽  
R. Manikandan

The kinetics of Oxidation of Phenol and aniline by quinolinium Chlorochromate (QCC) in aqueous acetic acid medium leads to the formation of quinone and azobenzene respectively. The reactions are first order with respect to both Phenol and aniline. The reaction is first order with respect to quinolinium chlorochromate (QCC) and is catalyzed by hydrogen ion. The hydrogen-ion dependence has the form: kobs = a+b [H+]. The rate of oxidation decreases with increasing dielectric constant of solvent, indicating the presence of an ion-dipole interaction. The reaction does not induced the polymerization of acrylonitrile. The retardation of the rate by the addition of Mn2+ ions confirms that a two electron transfer process is involved in the reaction. The reaction rates have been determined at different temperatures and the activation parameters have been calculated. From the above observations kinetic results a probable mechanism have been proposed.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


2004 ◽  
Vol 82 (9) ◽  
pp. 1372-1380 ◽  
Author(s):  
Sairabanu A Farokhi ◽  
Sharanappa T Nandibewoor

The kinetics of the oxidation of benzilic acid by potassium permanganate in an acidic medium were studied spectrophotometrically. The reaction followed a two-stage process, wherein both stages of the reaction followed first-order kinetics with respect to permanganate ion and benzilic acid. The rate of the reaction increased with an increase in acid concentration. Autocatalysis was observed by one of the products, i.e., manganese(II). A composite mechanism involving autocatalysis has been proposed. The activation parameters of the reaction were calculated and discussed and the reaction constants involved in the mechanisms were calculated. There is a good agreement between the observed and calculated rate constants under different experimental conditions.Key words: oxidation, autocatalysis, benzilic acid, two-stage kinetics.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Qamruzzaman ◽  
Abu Nasar

AbstractThe kinetics of the degradation of metribuzin by water-soluble colloidal MnO2 in acidic medium (HClO4) were studied spectrophotometrically in the absence and presence of surfactants. The experiments were performed under pseudo-first-order reaction conditions in respect of MnO2. The degradation was observed to be of the first order in respect of MnO2 while of fractional order for both metribuzin and HClO4. The rate constant for the degradation of metribuzin was observed to decrease as the concentration of MnO2 increased. The anionic surfactant, sodium dodecyl sulphate (SDS), was observed to be ineffective whereas the non-ionic surfactant, Triton X-100 (TX-100), accelerated the reaction rate. However, the cationic surfactant, cetyltrimethyl ammonium bromide (CTAB), caused flocculation with oppositely-charged colloidal MnO2; hence further study was not possible. The catalytic effect of TX-100 was discussed in the light of the available mathematical model. The kinetic data were exploited to generate the various activation parameters for the oxidative degradation of metribuzin by colloidal MnO2 in the absence as well as the presence of the non-ionic surfactant, TX-100.


2008 ◽  
Vol 6 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Ender Erdik ◽  
Fatma Eroğlu

AbstractThe kinetics of the C-S coupling of arylmagnesium bromides with phenyl tosylate has been studied in THF: toluene at 90°C. The reaction is first order in Grignard reagent and first order in phenyl tosylate. Kinetic data, Hammett relationship and activation parameters are consistent with a nucleophilic addition mechanism involving rate determining attack of carbanion to sulfonyl group followed by a fast phenoxide group leaving.


2011 ◽  
Vol 8 (2) ◽  
pp. 903-909 ◽  
Author(s):  
Shan Jinhuan ◽  
Zhang Jiying

The kinetics of oxidation of diethanolamine and triethanolamine by potassium ferrate(VI)in alkaline liquids at a constant ionic strength has been studied spectrophotometrically in the temperature range of 278.2K-293.2K. The reaction shows first order dependence on potassium ferrate(VI), first order dependence on each reductant, The observed rate constant (kobs) decreases with the increase in [OH-], the reaction is negative fraction order with respect to [OH-]. A plausible mechanism is proposed and the rate equations derived from the mechanism can explain all the experimental results. The rate constants of the rate-determining step and the thermodynamic activation parameters are calculated.


2001 ◽  
Vol 56 (3) ◽  
pp. 281-286 ◽  
Author(s):  
Ceyhan Kayran ◽  
Eser Okan

Abstract The kinetics of the thermal substitution of norbornadiene (nbd) by 2,2'-bipyridine (2,2'-bipy) in (CO)4Mo(C7H9) was studied by quantitative FT-IR and UV-VIS spectroscopy. The reaction rate exhibits first-order dependence on the concentration of the starting complex, and the observed rate constant depends on the concentration of both leaving nbd and entering 2,2'-bipy ligand. The mechanism was found to be consistent with the previously proposed one, where the rate determining step is the cleavage of one of the two Mo-olefin bonds. The reaction was performed at four different temperatures (35 -50 °C) and the evaluation of the kinetic data gives the activation parameters which now support states.


Author(s):  
Dayo Felix Latona ◽  
Adewumi Oluwasogo Dada

The reaction was studied via pseudo-first-order kinetics using a UV-1800 Shimadzu spectrophotometer with a thermostated cell compartment and interfaced with a computer. The reaction showed first order with respect to malachite green and sugar and hydroxyl ion concentrations. However, the reaction was independent of ionic strength and showed no dependence on the salt effect, indicating an inner sphere mechanism for the reaction. There was no polymerization of the reaction mixture with acrylonitrile, indicating the absence of radicals in the course of the reaction. Michaelis-Menten plot indicated the presence of a reaction intermediate in the rate-determining step. The activation parameters of the reaction have been calculated and products were elucidated by FTIR spectroscopy. The stoichiometry of the reaction is 1:1. A mechanism consistent with the above facts has been suggested.


1982 ◽  
Vol 47 (11) ◽  
pp. 2831-2837 ◽  
Author(s):  
Ľudovít Treindl ◽  
Vasil Dorovský

Oxidation of α-ketoglutaric acid with Ce(IV) ions in a solution of sulphuric acid is a reaction of the first order with respect to both Ce(IV) ions and substrate, is acid catalysed, and its rate is proportional to the reciprocal square of the equilibrium HSO4- concentration. From the temperature dependence of the rate constant in 1.5M-H2SO4, the activation parameters were determined as ΔH##f = 57 kJ/mol and ΔS##f = -45 J mol-1 K-1. The redox reaction proper consists apparently of two steps: in the first one, the enol form of α-ketoglutaric acid reacts with Ce(IV) ions with the formation of the corresponding radical; in the second one, the latter is oxidized further with Ce(IV) to give malonic and succinic acids. Conditions are indicated under which α-ketoglutaric acid serves as substrate for the Belousov-Zhabotinskii oscillation reaction in the presence of Ce(IV)-Ce(III) redox catalyst. Oscillations of Ce(IV) and Br2 concentrations, shifted in phase, can be recorded polarographically with a rotating platinum electrode.


Sign in / Sign up

Export Citation Format

Share Document