scholarly journals Kinetics of Oxidation of Tryptophan by Sodium Hypochlorite

1981 ◽  
Vol 36 (3) ◽  
pp. 359-361 ◽  
Author(s):  
Thomas Rausch ◽  
Frieder Hofmann ◽  
Willy Hilgenberg

AbstractThe oxidation of tryptophan to 3-indoleacetaldehyde with sodium hypochlorite was investigated with 14C labelled DL-tryptophan. The reaction was performed under pseudo first order conditions. From the pH dependence of the reaction it was concluded that only the unprotonated tryptophan is converted to the aldehyde. The activation energy is 35 ± 2.2 (SE) kJ x mol-1 as derived from the Arrhenius plot. Variing the pH between 8.5 and 11.0 and the temperature in the range from 298 K to 318 K did not alter the selectivity of the reaction as confirmed by TLC of the product (purity ≧ 90%). A possible reaction mechanism is proposed.

1987 ◽  
Vol 52 (7) ◽  
pp. 1758-1763 ◽  
Author(s):  
Li Gwang Hun ◽  
Lubomír Nondek

Kinetics of the addition of tetrachloromethane to styrene catalyzed by copper-amine complexes was studied. The pseudo-first order kinetics in respect to styrene and the catalyst was observed at an excess of tetrachloromethane. The reaction mechanism involving a catalytic cycle compatible with the kinetic observations is proposed. The experimental activation energy, being about 104 kJ mol-1, indicates a catalytic mechanism.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


1992 ◽  
Vol 70 (10) ◽  
pp. 2515-2519 ◽  
Author(s):  
Sharifa S. Alkaabi ◽  
Ahmad S. Shawali

The kinetics of the reactions of a series of (Z)-4-arylidene-2-phenyl-5(4H)oxazolones 1 with n-butylamine and piperidine were studied spectrophotometrically in dioxane, ethanol, and cyclohexane under pseudo-first-order conditions and at different temperatures. The relation k1(obs) = k2[amine] + k3[amine]2 was found applicable for all reactions studied in either dioxane or ethanol. However, in cyclohexane the n-butylaminolysis of 1 followed only third-order kinetics k1(obs) = k3[n-BuNH2]2. The kinetics of the reaction of 1 with n-butylamine in the presence of catalytic amounts of triethylamine in dioxane followed the equation: k1(obs)k2 = [n-BuNH2] + k3[n-BuNH2]2[Formula: see text] [Et3N]. The rate constants k2 and k3 correlated well with the Hammett equation and the corresponding activation parameters were determined. The results were interpreted in terms of a mechanism involving solvent- and amine-catalyzed processes.


2006 ◽  
Vol 71 (12) ◽  
pp. 1311-1321 ◽  
Author(s):  
A. Dayalan ◽  
C. Revathi

Cobaloximes such as trans[Co(dmgH) 2(Py-NH2)Cl] and trans- [Co(dmgH) 2(Py-CN)Cl], where, dmgH = dimethylglyoximato anion, Py-NH 2 = 4-aminopyiridne and Py-CN = 4-cyanopyridine, were prepared and characterized by elemental analysis, UV-VIS, IR and NMR spectroscopy. The kinetics of iron(II) reduction of the complexes were studied spectrophotometrically at 300 nm in 2% (v/v) DMSO-H2O medium at 27?0.1?C and I = 0.25 M (LiClO4) at various hydrogen ion concentrations in the range 2.5 x 10-4 to 5.0x10-2 M under pseudo-first-order conditions using an excess of the reductant. The inverse dependence of rate on [H+] suggests an equilibrium between the protonated and unportonated forms of the complexes, the protonated form reacting slower than the unprotonated form. Computation of the data enabled the evaluation of the rate constants for the protonated and unprotonated from of the complexes, leading to an evaluation of the protonation constant for the complexes. .


2021 ◽  
Vol 13 (2) ◽  
pp. 25
Author(s):  
Hamzeh M. Abdel-Halim ◽  
Hutaf M. Baker ◽  
Akef I. Alhmaideen ◽  
Adnan S. Abu-Surrah

Kinetics of oxidation of L-cysteine by new series of substituted ONNO-donor salen-type Schiff base complexes of general formula [MIII(L)Cl] (M = Co, Fe, Cr; L = Schiff base ligand) have been studied in aqueous solutions. Measurements were run at constant temperature (25º C), constant ionic strength (0.20 M), and constant pH (7.0) under pseudo-first order conditions, in which the concentration of cysteine is around two orders of magnitude greater than that of metal complex. The observed rate constant was determined by following the change in absorbance of reaction mixture at a predetermined wavelength with time. Results show that the rate of oxidation depends on the type of metal center, with Co(III) complexes were found to have the highest rates due to higher reduction potential of Co(III). The oxidation rate was also found to depend on steric factor and the electron withdrawing / releasing ability of the ligand bound to the metal ion.


1986 ◽  
Vol 64 (5) ◽  
pp. 871-875 ◽  
Author(s):  
Ahmad S. Shawali ◽  
Hassan A. Albar

The kinetics of triethylamine (TEA) catalyzed deydrochlorination of a series of N-aryl-C-ethoxycarbonylformohydrazidoyl chlorides 1a–m have been studied under pseudo-first-order conditions in 4:1 (v/v) dioxane–water solution at 30 °C. For all compounds studied, the kinetics followed the rate law: kobs = k2 (TEA). The values of the overall second-order rate constants for the studied compounds were correlated by the equation: log k2 = 0.533σ−-0.218. The results are compatible with a mechanism involving a fast reversible deprotonation step leading to the anion of 1, followed by rate-determining step involving the loss of the chloride ion from the anion. The reaction constants of these two steps were estimated to be 0.845 and −0.312, respectively.


1989 ◽  
Vol 67 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herraez ◽  
Emilio Calle.

The kinetics of oxidation of proline by periodate has been studied at pH 1.40–8.83 and 30.0 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. There was no evidence for the formation of an appreciable amount of intermediate. The reaction rate is highest at pH 4–7 and the oxidation is catalysed by [Formula: see text] ions. The pH dependence of the reaction rate can be explained in terms of reaction of periodate monoanion and the protonated and dipolar forms of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants obtained from the derived rate law are in agreement with the observed rate constants, thus justifying the rate law and the proposed mechanistic scheme. Keywords: oxidation of proline, oxidation by periodate.


1986 ◽  
Vol 64 (5) ◽  
pp. 969-972 ◽  
Author(s):  
Donald C. Wigfield ◽  
Season Tse

The kinetics of oxidation of the mercurous ion by peroxidase have been measured by following the disappearance of mercurous ion using cold-vapour atomic absorption spectroscopy. Pseudo-first-order kinetics are observed with respect to mercurous ion, and the pseudo-first-order rate constants are linearly related to peroxidase concentration, showing first-order dependence on peroxidase. This behaviour is identical to oxidation of elemental mercury, and the second-order rate constant, 1.44 × 104 M−1 s−1 at 23 °C, is also, within experimental error, the same as that for elemental mercury oxidation. The data are interpreted in terms of peroxidase-induced disproportionation of the mercurous dimer, followed by two-electron oxidation of zero-valent mercury.


RSC Advances ◽  
2014 ◽  
Vol 4 (99) ◽  
pp. 56068-56073 ◽  
Author(s):  
Karuppiah Nagaraj ◽  
Subramanian Sakthinathan ◽  
Sankaralingam Arunachalam

The kinetics of reductions of surfactant cobalt(iii) complexes by iron(ii) in liposome vesicles (DPPC) and amphiphilic salt ((BMIM)Br) were studied at different temperatures by UV-Vis absorption spectroscopy method under pseudo first order conditions using an excess of the reductant.


Sign in / Sign up

Export Citation Format

Share Document