Kinetics and mechanism of the oxidation of proline by periodate

1989 ◽  
Vol 67 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herraez ◽  
Emilio Calle.

The kinetics of oxidation of proline by periodate has been studied at pH 1.40–8.83 and 30.0 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. There was no evidence for the formation of an appreciable amount of intermediate. The reaction rate is highest at pH 4–7 and the oxidation is catalysed by [Formula: see text] ions. The pH dependence of the reaction rate can be explained in terms of reaction of periodate monoanion and the protonated and dipolar forms of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants obtained from the derived rate law are in agreement with the observed rate constants, thus justifying the rate law and the proposed mechanistic scheme. Keywords: oxidation of proline, oxidation by periodate.

1985 ◽  
Vol 63 (9) ◽  
pp. 2349-2353 ◽  
Author(s):  
Rosa Pascual ◽  
Miguel A. Herráez

The kinetics of oxidation of serine and threonine by periodate have been investigated in acid medium at 10 °C. The reaction rate is first order in both periodate and amino acid, and the overall reaction follows second-order kinetics. The rates decrease with increase in [H+]. A catalytic effect of the buffers was not observed in the oxidation process. An analysis of the dependence of the rate on [H+] reveals that the reactive species under the experimental conditions are periodate monoanion and dianion and the dipolar form of the amino acid. The mechanism proposed and the derived rate law are consistent with the observed kinetics. The rate constants predicted using the derived rate law are in agreement with the observed rate constants, thus justifying this rate law and hence the proposed mechanistic scheme.


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.


1990 ◽  
Vol 68 (9) ◽  
pp. 1499-1503 ◽  
Author(s):  
Conchita Arias ◽  
Fernando Mata ◽  
Joaquin F. Perez-Benito

The kinetics of oxidation of potassium iodide by hydrogen peroxide in aqueous perchloric acid has been studied both in the absence and in the presence of sodium molybdate by means of the initial-rates method. The law found for the total initial reaction rate is[Formula: see text]The activation energies associated with rate constants k1, k2, and k3 are 52 ± 1, 49 ± 1, and 42 ± 3 kJ mol−1, respectively. A mechanism in agreement with the experimental kinetic data is proposed, according to which rate constants k1, k2, and k3 correspond to the oxidations of iodide ion by H2O2, H3O2+ and H2MoO5, respectively. Keywords: catalysis, hydrogen peroxide, iodide ion, kinetics, molybdate ion.


1979 ◽  
Vol 44 (12) ◽  
pp. 3588-3594 ◽  
Author(s):  
Vladislav Holba ◽  
Olga Volárová

The oxidation kinetics of cis-bis(ethylenediamine)isothiocyanonitrocobalt(III) ion with peroxodisulphate was investigated in the medium of 0.01 M-HClO4 in dependence on the ionic strength and temperature and the reaction products were identified. Extrapolated values of thermodynamic activation parameters were determined from the temperature dependence of the rate constants extrapolated to zero ionic strength. The distance of the closest approach was estimated for the reacting ions by evaluating the primary salt effect. To elucidate the mechanism, the influence of the cyclic polyether 18-crown-6 on the reaction rate was followed.


2004 ◽  
Vol 69 (10) ◽  
pp. 1877-1888
Author(s):  
Mária Oščendová ◽  
Jitka Moravcová

The kinetics of methylation of methyl 5-deoxy-α-D-xylofuranoside (1), methyl 5-deoxy-β-D-xylofuranoside (2) and their partly methylated derivatives with methyl iodide in the presence of sodium hydroxide in acetonitrile was studied. The reaction rate was independent of the base concentration during the first half-time only and the methylation proceeded as a first-order reaction. The rate constants of all side and consecutive reactions were calculated and the influence of both polar and steric effect is discussed. The methylation of 1 was highly regioselective giving almost exclusively 5-deoxy-2-O-methyl-α-D-xylofuranoside.


2004 ◽  
Vol 08 (11) ◽  
pp. 1269-1275 ◽  
Author(s):  
Ahsan Habib ◽  
Masaaki Tabata ◽  
Ying Guang Wu

The kinetics of the reaction of the tetrakis(1-methylpyridium-4-yl)porphyrin tetracation, [ H 2( TMPyP )]4+, with gold(III) ions were studied along with equilibria of gold(III) species in aqueous medium at 25°C, I = 0.10 M ( NaNO 3). The equilibrium constants for the formation of [ AuCl 4-n( OH ) n ]- ( n = 0,…,4), defined as β n = [ AuCl 4- n ( OH ) n ]- [ Cl -] n / [ AuCl 4-][ OH -] n were found to be that log β1 = 7.94 ± 0.03, log β2 = 15.14 ± 0.03, log β3 = 21.30 ± 0.05 and log β4 = 26.88 ± 0.05. The overall reaction was first order with respect to each of the total [ Au (III)] and [ H 2 TMPyP 4+]. On the basis of pH dependence on rate constants and the hydrolysis of gold(III), the rate expression can be written as d [ Au ( TMPyP )5+]/ dt = ( k 1[ AuCl 4-] + k2[ AuCl 3( OH )-] + k3[ AuCl 2( OH )2-] + k4[ AuCl ( OH )3-])[ H 2 TMPyP 4+], where k1, k2, k3 and k4 were found to be (2.16 ± 0.31) × 10-1, (6.56 ± 0.19) × 10-1, (1.07 ± 0.24) × 10-1, and (0.29 ± 0.21) × 10-1 M -1. s -1, respectively. The kinetic data revealed that the trichloromonohydroxogold(III) species, [ AuCl 3( OH )]-, is the most reactive. The higher reactivity of [ AuCl 3( OH )]- is explained by hydrogen bonding formation between the hydroxyl group of [ AuCl 3( OH )]- and the pyrrole hydrogen atom of [ H 2( TMPyP )]4+. Furthermore, applying the Fuoss equation to the observed rate constants at different ionic strengths, the apparent net charge of [ H 2( TMPyP )]4+ was calculated to be +3.5.


1978 ◽  
Vol 33 (6) ◽  
pp. 657-659 ◽  
Author(s):  
M. P. Singh ◽  
A. K. Singh ◽  
Mandhir Kumar

Abstract The present paper deals with the kinetics of oxidation of D-galactose by Nessler's reagent in alkaline medium. The reaction is zero order with respect to Hg(II) and first order with respect to reducing sugar. The direct proportionality of the reaction rate at low hydroxide ion concentrations shows retarding trend at higher concentrations. The reaction rate is inversely proportional to iodide ion concentration. A mechanism has been proposed taking HgI3- as the reacting species


1992 ◽  
Vol 70 (10) ◽  
pp. 2515-2519 ◽  
Author(s):  
Sharifa S. Alkaabi ◽  
Ahmad S. Shawali

The kinetics of the reactions of a series of (Z)-4-arylidene-2-phenyl-5(4H)oxazolones 1 with n-butylamine and piperidine were studied spectrophotometrically in dioxane, ethanol, and cyclohexane under pseudo-first-order conditions and at different temperatures. The relation k1(obs) = k2[amine] + k3[amine]2 was found applicable for all reactions studied in either dioxane or ethanol. However, in cyclohexane the n-butylaminolysis of 1 followed only third-order kinetics k1(obs) = k3[n-BuNH2]2. The kinetics of the reaction of 1 with n-butylamine in the presence of catalytic amounts of triethylamine in dioxane followed the equation: k1(obs)k2 = [n-BuNH2] + k3[n-BuNH2]2[Formula: see text] [Et3N]. The rate constants k2 and k3 correlated well with the Hammett equation and the corresponding activation parameters were determined. The results were interpreted in terms of a mechanism involving solvent- and amine-catalyzed processes.


1973 ◽  
Vol 26 (9) ◽  
pp. 1863 ◽  
Author(s):  
GT Briot ◽  
RH Smith

The kinetics of oxidation of thiocyanate to sulphate by aqueous iodine in the pH range 9.2-12.5 have been studied using a spectrophotometric stopped flow technique. The reaction is general base-catalysed, having the rate law ��������������������� -d[I2]a/dt = ([SCN-][I3-]/[I-]2)Σ kB[B] where [I2]a is the total analytical concentration of iodine, [B] is the concentration of base, and where the summation is taken over all bases present. Rate constants, kB, and activation energies have been measured for the bases, OH-, PO43- and CO32-. ��� A mechanism involving the initial steps ����������������� I2+SCN- ↔ ISCN+I- �����������������(rapid equilibrium) ������������� ISCN+H2O+B → HOSCN+I- + HB+ �����������(rate determining) followed by rapid reactions of HOSCN with itself or with iodine is proposed.


Sign in / Sign up

Export Citation Format

Share Document