scholarly journals Molecular Determinants for Drug Receptor Interactions, 9 1H and 13C NMR Spectra of the Narcotic Antagonist N-Allyl-N-normetazocine by Two-Dimensional Chemical Shift Correlation Spectroscopy

1987 ◽  
Vol 42 (8) ◽  
pp. 1021-1026 ◽  
Author(s):  
Bruno Perly ◽  
Patricia Le Bail-Richer ◽  
Giuseppe C. Pappalardo ◽  
Antonio Grassi

AbstractThe high frequency 1H and 13C NMR spectra (at 500 and 75.47 MHz, respectively) of N-allyl- N-normetazocine (NAM) hydrochloride in 2H2O solution were run and fully analyzed with the aid of both homonuclear 1H -1H and heteronuclear 13C - 1H chemical shift correlation experiments. Selective broadening of the signals of the protons in 3-, 4-, 8-, 9-, 12-positions was observed at temperatures <350 K. This was found to be consistent with an inversion process occurring between the N-equatorial and N-axial configurational isomers of NAM whose rate of exchange is of the same order of magnitude of the chemical shifts differences at 500 MHz. The increase of temperature at 350 K is thus adequate to make “fast” the process in the NM R time scale and then to resolve the spectral portions. The experimental proton-proton coupling constants were found to be consistent with a slightly distorted chair conformation of the piperidinic ring in NAM hydrochloride. The 13C NMR spectrum showed the distinct spectra of the two conformers, which are present in the ratio of ca. 80 (N-equatorial) : 20 (N -axial). The field frequency employed for the experiment was therefore sufficient to make “slow” the exchange process between the two isomeric forms, whose resonance peaks could be isolated in the non-acidified solution.

1987 ◽  
Vol 42 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Udo Kunze ◽  
Rolf Tittmann

Abstract A series of alkyl-arylsubstituted N-methyl phosphinothioformamides, R(Ph)PC(S)NHMe (2 a-g), with varying bulkiness of the alkyl rest was synthesized from the racemic secondary phosphines 1a-g and methyl isothiocyanate. 1H and 13C NMR spectra of 2a−g reveal signal sets of diastereotopic nuclei due to the asymmetry of the molecule. The chemical shift and coupling constants were confirmed by simulation in case of 2b, c. The vicinal 31P−13C couplings of the menthyl and neomenthyl compounds 2f, g show an "anti-Karplus" behaviour (3J(gauche) > 3J(trans)) and allow the conformational assignment of the alicyclic group. The 31P chemical shifts of 2a−d give a linear correlation with the cone angle of the alkyl substituents quoted from literature.


1986 ◽  
Vol 41 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Bruno Perly ◽  
Giuseppe C. Pappalardo ◽  
Antonio Grassi

The full analysis of the 1H NMR spectra of naloxone and naltrexone (hydrochloride salts, in 2H2O solution) was performed by using an high-frequency (500 MHz) spectrometer and the recent technique of two-dimensional (2D ) homonuclear shift spectroscopy. The 1H-1H connectivities allowed detection of correlated resonances and assignments of multiplets. The shapes of the contour levels of the COSY 45 spectra were also used to check the relative signs of coupling constants. The refinement of spectral parameters of some component spin-systems of the complex spectra was performed by computerized iterative simulation of patterns.The spectral analysis provided proton coupling constants that allowed to establish a slightly distorted-chair conformation of the piperidine ring in both compounds.The magnetic non-equivalence found for the protons bonded to C-17 atom (part of the N-alkyl fragment) was found to be larger in naltrexone than in the analogous naloxone. This fact, while no significant differences were observable in the chemical shifts of corresponding protons of the rigid molecular backbone of the two narcotic antagonists under study, was assigned to smaller degree of internal conformational flexibility of the N-methylcyclopropyl group in naltrexone with respect to that of the N-methylallyl group in naloxone.The above findings appeared in good agreement with our previously proposed views based on results from 13C relaxation times studies, which suggested the possible correlation of the motional rates of the N-methyl-R group to the pharmacological activity of antagonist compounds. This would consist in a direct correlation between decreasing flexibility of the N-bonded fragment and increasing antagonistic potency.


1983 ◽  
Vol 48 (7) ◽  
pp. 1829-1841 ◽  
Author(s):  
Jan Schraml ◽  
Eva Petráková ◽  
Otomar Pihar ◽  
Ján Hirsch ◽  
Václav Chvalovský

All possible mono-, di-, and tri- O-methyl, O-benzyl, O-benzoyl, and O-acetyl derivatives of methyl β-D-xylopyranoside were fully trimethylsilylated and their 1H and 13C NMR spectra measured in deuteriochloroform solutions. The spectra were analysed and the chemical shifts completely assigned on the basis of decoupling experiments. The proton-proton coupling constants vary only very little throughout the series. Conformer population analysis by the method of average coupling constants shows that trimethylsilylation increases the C1 conformer population and makes the series conformationally homogenous. Owing to this conformational homogeneity chemical shifts (both 1H and 13C) satisfy very well direct additivity rule. It is suggested that pertrimethylsilylation should be employed whenever deviations from chemical shift additivity are caused by conformational mobility of the investigated series of compounds and when bulky groups can stabilize one of the conformers.


1980 ◽  
Vol 45 (10) ◽  
pp. 2766-2771 ◽  
Author(s):  
Antonín Lyčka

The 13C and 14N NMR spectra of 1M solutions of 1-(substituted phenyl)pyridinium salts (4-CH3, 4-OCH3, H, 4-Cl, 4-Br, 4-I, 3-NO2, 4-NO2, 2,4-(NO2)2 (the 13C NMR only)) have been measured in heavy water at 30 °C. The 13C and 14N chemical shifts, the 1J(CH) coupling constants, some 3J(CH) coupling constants, and values of half-widths Δ 1/2 of the 14N NMR signals are given. The 13C chemical shifts of C(4) correlate with the σ0 constants (δC(4) = (1.79 ± 0.097) σ0 + (147.67 ± 0.041)), whereas no correlation of the nitrogen chemical shifts with the σ constants has been found. The half-widths Δ 1/2 correlate with the σ0 constants (Δ 1/2 = (76.2 ± 4.9) σ0 + (106.4 ± 2.2)) except for 1-phenylpyridinium chloride.


1990 ◽  
Vol 68 (2) ◽  
pp. 272-277 ◽  
Author(s):  
Torbjörn Drakenberg ◽  
Peter Brodelius ◽  
Deane D. McIntyre ◽  
Hans J Vogel

The 1H and 13C NMR spectra of the cardenolides digitoxigenin, digoxigenin, digitoxin, and mono- and bis-digitoxigenin digitoxosides have been completely assigned by two-dimensional NMR spectroscopy. The techniques used include phase-sensitive COSY, multiple relay COSY, and carbon–proton correlation (HETCOR and HMQC) spectra. Various aspects of the solution conformation of the steroid moiety of digitoxin and digoxigenin could be determined from coupling constants and NOE difference experiments and they are indicative of an all-chair conformation. The carbohydrate rings in digitoxin and the mono- and bis-digitoxigenin digitoxosides are also in the chair conformation. Keywords: cardenolides, digitoxigenin, digitoxin, 2-dimensional NMR, conformational analysis.


1979 ◽  
Vol 57 (23) ◽  
pp. 3168-3170 ◽  
Author(s):  
Henk Hiemstra ◽  
Hendrik A. Houwing ◽  
Okko Possel ◽  
Albert M. van Leusen

The 13C nmr spectra of oxazole and eight mono- and disubstituted derivatives have been analyzed with regard to the chemical shifts and the various carbon–proton coupling constants of the ring carbons. The data of the parent oxazole are compared with thiazole and 1-methylimidazole.


1990 ◽  
Vol 55 (5) ◽  
pp. 1193-1207 ◽  
Author(s):  
Jaroslav Holeček ◽  
Antonín Lyčka ◽  
Karel Handlíř ◽  
Milan Nádvorník

13C and 119Sn NMR spectra of diphenyl- and dibenzyltin(IV) compounds have been studied in solutions of coordinating and non-coordinating solvents. Regions of values of the δ(119Sn) chemical shifts have been determined which characterize individual types of coordination of the central tin atom. The values of 13C NMR spectral parameters, the δ(13C) chemical shifts and nJ(119Sn, 13C) coupling constants, have been used to describe the real shapes of coordination sphere of the central tin atom and to discuss the internal structure of the organic substituents and of the nature of their bonding linkage to the tin atom.


RSC Advances ◽  
2015 ◽  
Vol 5 (46) ◽  
pp. 36858-36864 ◽  
Author(s):  
Yang Li

The 13C NMR spectra and vicinal proton–proton coupling constants of two tricyclic macrolactone natural products were analyzed using computational methods, which resulted in their structural revisions.


1990 ◽  
Vol 68 (7) ◽  
pp. 1145-1150 ◽  
Author(s):  
Bruce Coxon

Two pulse sequences are described for acquisition of two-dimensional, carbon–proton chemical shift correlated 13C NMR spectra by the "phase oscillations to maximize editing technique". One of these sequences provides two-dimensional, carbon–proton chemical shift correlated spectra in which the 1H–1H coupling constants are present in the 1H chemical shift dimension, whereas the other sequence includes a bilinear rotation decoupling unit that removes the vicinal 1H–1H couplings in this dimension. Extensions of these techniques to generation of two-dimensional, carbon–proton chemical shift correlated CH, CH2, and CH313C NMR subspectra from linear combinations of three two-dimensional data sets are described. Decreased residual signals in the edited 2D subspectra have been achieved by Pascal programs that include six floating point coefficients, and a method for their calibration is discussed. Results are reported for troleandomycin (1). Keywords: 13C nuclear magnetic resonance, carbon–proton chemical shift correlation, DEPT, Pascal programs, POMMIE, two-dimensional NMR spectrum editing, troleandomycin.


Sign in / Sign up

Export Citation Format

Share Document