Carbacylamidophosphates: Synthesis, Properties, and Structure of Dimorfolido-N-trichloroacetylphosphorylamide

1998 ◽  
Vol 53 (4) ◽  
pp. 481-484 ◽  
Author(s):  
Vladimir A Ovchynnikov ◽  
Vladimir M Amirkhanov ◽  
Taras P Timoshenko ◽  
Tadeusz Glowiak ◽  
Henryk Kozlowskib

Abstract Dimorpholido-N-trichloroacetylphosphorylamide: CCl3C(O)NHP(O)[N(CH2CH2)2O]2 [HL] and its sodium [NaL] and morpholine [HN(CH2-CH2)2O•HL] salts were synthesized for the first time. The compounds were studied by IR spectroscopy and assignments of the characteristic IR bands have been made. The structure of [HL] was determined by X-ray diffraction. Crystals are monoclinic, a = 11.412(2) Å, b = 16.056(3) Å, c = 9.622(2) Å, β = 108.55(3)°, space group P21/c; Z = 4. The refinement of the structure converged at R = 0.066. The molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.

2000 ◽  
Vol 55 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Katerina E. Gubina ◽  
Vladimir A. Ovchynnikov ◽  
Vladimir M. Amirkhanov ◽  
Viktor V. Skopenkoa ◽  
Oleg V. Shishkinb

N,N′-Tetramethyl-N"-benzoylphosphoryltriamide (I) and dimorpholido-N-benzoylphosphorylamide (II), and their sodium salts Nal, Nall were synthesized and characterized by means of IR and 1H, 31P NMR spectroscopy. The structures of I, II were determined by X-ray diffraction: I monoclinic, space group P2i/c with a = 10.162(3), b= 11.469(4), c = 12.286(4) Å , β = 94.04°, V = 1428.4(8) A 3, Z = 4, p(calcd) = 1.187 g/cm3; II monoclinic, space group C2/c with a = 15.503(4), b = 10.991(3), c = 22.000(6) Å, β = 106.39°, V = 3596.3(17) Å3, Z = 8, p(calcd.) = 1.253 g/cm3. The refinement of the structures converged at R = 0.0425 for I, and R = 0.068 for II. In both structures the molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.


1994 ◽  
Vol 49 (7) ◽  
pp. 898-910 ◽  
Author(s):  
Reinhold Tacke ◽  
Martin Kropfgans ◽  
Andrea Tafel ◽  
Frank Wiesenberger ◽  
William S. Sheldrick ◽  
...  

Abstract Starting from (MeO)3SiCH2Cl (10) and Ph2(H)SiCH2OH (16), respectively, the (hydroxymethyl)diphenyl(piperidinoalkyl)silanes (HOCH2)Ph2Si(CH2)2NC5H10 (6) and (HOCH2)Ph2Si(CH2)3NC5H10 (8) have been synthesized [10→Ph2(MeO)SiCH2Cl (11)→Ph2(CH2=CH)SiCH2Cl (12)→Ph2(CH2=CH)SiCH2OAc (13)→Ph2(CH2=CH)SiCH2OH (14)→Ph2(CH2=CH)SiCH2OSiMe3 (15)→6; 16→Ph2(H)SiCH2OSiMe3 (17)→8; NC5H10 = piperidino]. N-Quaternization of 6 and 8 with MeI gave the corresponding methiodides 7 and 9, respectively. As shown by IR-spectroscopic studies, compounds 6 and 8 form intramolecular O-H···N hydrogen bonds in solution (CCl4). In the crystal, 6 (space group Pna21; two crystallographically independent molecules) also forms intramolecular O-H···N hydrogen bonds whereas 8 (space group P1̅) forms intermolecular O-H···N hydrogen bonds leading to the formation of centrosymmetric dimers (single-crystal X-ray diffraction studies). The (hydroxymethyl) silanes 6-9 and the related silanols (HO)Ph2Si(CH2)2NC5H 10 (sila-pridinol; 1), sila-pridinol methiodide (2), (HO)Ph2Si(CH2)3NC5H10 (sila-difenidol; 3) and sila-difenidol methiodide (4) were investigated for their antimuscarinic properties. In functional pharmacological experiments as well as in radioligand competition studies, all compounds behaved as simple competitive antagonists at muscarinic M1-, M2-, M3- and M4-receptors. In general, the silanols 1-4 displayed higher receptor affinities (up to 100-fold) than the corresponding (hydroxymethyl) silanes 6-9 . In the (hydroxymethyl)silane series, compound 7 was found to be the most potent muscarinic antagonist [pA2/pKi= 8,71/8,6 (M1), 8,23/7,8 (M2), 8,19/7,8 (M3); pKi = 8,2 (M4)]. In the silanol series, the related compound 2 showed the most interesting antimuscarinic properties [pA2/pKi = 10,37/9,6 (M1), 8,97/8,8 (M2), 9,08/8,8 (M3); pKi = 9,4 (M4)].


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


2000 ◽  
Vol 33 (6) ◽  
pp. 1351-1359 ◽  
Author(s):  
A. Ben Haj Amara ◽  
H. Ben Rhaiem ◽  
A. Plançon

Nacrite has been intercalated with two polar organic molecules: dimethyl sulfoxide (DMSO) andN-methylacetamide (NMA). The homogeneous nacrite complexes have been studied by X-ray diffraction (XRD) and infrared (IR) spectroscopy. The XRD study is based on a comparison between experimental and calculated patterns. The structures of the intercalated compounds have been determined, including the mutual positions of the layers after intercalation and the positions of the intercalated molecules in the interlayer space. It has been shown that the intercalation process causes not only a swelling of the interlayer space but also a shift in the mutual in-plane positions of the layers. This shift depends on the nature of the intercalated molecules and is related to their shape and the hydrogen bonds which are established with the surrounding surfaces. For a given molecule, the intercalation process is the same for the different polytypes of the kaolinite family. These XRD results are consistent with those of IR spectroscopy.


1979 ◽  
Vol 34 (11) ◽  
pp. 1487-1490 ◽  
Author(s):  
Hubertus Wagner ◽  
Anton Jungbauer ◽  
Gerhard Thiele ◽  
Helmut Behrens

The crystal structure of the monoclinic η5-C5H5RU(CO)2(CONH2) has been determined by X-ray diffraction (space group P1̄ with Z - 4 and a = 1248,3 pm, b = 963,3 pm, c = 845,2 pm, α= 97,35°, β= 106,11°, and γ= 99,32°). The Ru is pseudo-octahedrally coordinated to the η5-C5H5 ring, the two CO groups and the CONH2 ligand with a planar RuC(O)N-moiety. Dimers are formed by N-H···O hydrogen bonds connecting the carbamoyl ligands of two molecules. Further hydrogen bonds link these dimers to form a helical chain.


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


2010 ◽  
Vol 65 (12) ◽  
pp. 1462-1466 ◽  
Author(s):  
Michaela K. Meyer ◽  
Jürgen Graf ◽  
Guido J. Reiß

[Me(HO)2P-(CH2)10-P(O)OHMe]2[I3]2・MeHO(O)P-(CH2)10-P(O)OHMe (1) was synthesized and characterized by IR, Raman and NMR spectroscopy. Its structure was determined by singlecrystal X-ray diffraction (T = 100 K; space group P1̄). The structure consists of decane-1,10-diyl-bis- (methylphosphinic acid) molecules and the analogous mono-protonated cations in a ratio 1:2 connected with each other by strong O-H···O hydrogen bonds to form a two-dimensional network. Between these hydrogen-bonded layers, there are elongated cavities each containing two triiodide anions. The intermolecular I· · · I distance of the two enclosed triiodide anions is 3.6317(4) Å and should be considered as an interhalogen bonding interaction.


1983 ◽  
Vol 38 (1) ◽  
pp. 20-29 ◽  
Author(s):  
Bernt Krebs ◽  
Marita Hucke ◽  
Michael Hein ◽  
Andreas Schäffer

Abstract The monomeric SeOCl3- ion, which can be prepared as the tetraphenylarsonium salt from SeOCl2 and As(C6H5)4Cl, was structurally characterized by a low-temperature single crystal X-ray diffraction analysis. [As(C6H5)4]SeOCl3 is monoclinic, space group P21/c, with a = 9,332(3), b = 13,761(4), c = 18,985(6) Å, β = 110,97(3)° (at -135 °C), Z = 4; it contains a novel type of ψ-trigonal bipyramidal oxotrichloroselenate(IV) anion which is not associated to dimers or polymer chains as in known structures. The equatorial positions are occupied by doubly bonded oxygen (Se-O 1,601(3) Å) and by one Cl(Se-Cl 2,234(1) Å), the axial Se-Cl bonds (2,430(1) and 2,475(1) Å) being significantly longer. [N(C2H5)4]SeOCl3, which was obtained as crystals by oxidation of trichloroselenate(II), is triclinic, space group P1̄, with a = 10,607(3), b = 8,950(2), c = 8,862(2) Å, α = 119,79(2)°, β = 101,07(2)°, γ = 96,28(2)°, Z = 2. The X-ray structure analysis shows the anions to be present as centrosymmetric dimers Se2O2Cl62- like in the [P(C6H5)4]+ salt, with two tetragonal SeOCl4 pyramids linked through a Cl···Cl edge and the lone pairs trans to the axial Se-O bonds (1,589(4) Å). Se-Cl bond lengths are 2.270(1) and 2,351(2) Å (terminal); 2,698(1) and 2,920(1) Å (bridging). The results show that the nature of the reaction products of the Lewis acid SeOCl2 with halogenides as bases changes very sensitively with small variations in cations and environment. The vibrational spectra are discussed.


2018 ◽  
Vol 74 (11) ◽  
pp. 1390-1394 ◽  
Author(s):  
Rami Al-Oweini ◽  
Bassem S. Bassil ◽  
Marwa Itani ◽  
Dilara Börte Emiroğlu ◽  
Ulrich Kortz

Interaction of the mixed-valent 12-manganese coordination complex [MnIII 8MnIV 4O12(CH3COO)16(H2O)4] with the lacunary 9-tungstoarsenate(V) [A-α-AsW9O34]9− resulted in the 10-manganese(III/IV)-containing 36-tungsto-4-arsenate(V), [MnIII 6MnIV 4O4(OH)12(H2O)12(A-β-AsW9O34)4]22− (1). Polyanion 1 was isolated as a hydrated mixed potassium–sodium salt, K14Na8[MnIII 6MnIV 4O4(OH)12(H2O)12(A-β-AsW9O34)4]·104H2O, which crystallizes in the orthorhombic space group Pbcn and was characterized by FT–IR spectroscopy and single-crystal X-ray diffraction, as well as elemental and thermogravimetric analyses. The title polyanion contains a unique [MnIII 6MnIV 4O4(OH)12(H2O)12]14+ core stabilized within the 36-tungsto-4-arsenate(V) framework.


1981 ◽  
Vol 36 (2) ◽  
pp. 161-171 ◽  
Author(s):  
Joachim Fuchs ◽  
Axel Thiele ◽  
Rosemarie Palm

Abstract Dodecatungstosilicates free of crystal water were prepared for the first time by using tetraalkylammonium as cation. The crystal structure of the tetramethylammonium a-dodeeatungstosilicate [N(CH3)4]4SiW12O40 (1) and tetrabutylammonium) β-dodecatungstosilicate, [N(C4H9)4]4SiWi2040 (2) were solved by X-ray diffraction. (1) crystallizes tetragonal in the space group 14̅ with lattice parameters a = 14.642 Å; c= 12.706 Å; (2) orthorhombic, space group P212121 with a = 29.277 Å, b = 22.181 Å and c = 15.381 Å. The differences between the two isomeric heteropolyanions are discussed, especially the distances and angles between the tungsten atoms. Comparison of characteristic differences in the vibrational spectra permits the identification of the isomeric anions.


Sign in / Sign up

Export Citation Format

Share Document