The Stannides RERhSn (RE = Ho - Yb) and ScTSn (T = Pd, Pt) - Structure Refinements and 119Sn Mössbauer Spectroscopy

2001 ◽  
Vol 56 (7) ◽  
pp. 589-597 ◽  
Author(s):  
Ratikanta Mishra ◽  
Rainer Pöttgen ◽  
Rolf-Dieter Hoffmann ◽  
Henning Trill ◽  
Bernd D. Mosel ◽  
...  

Abstract The stannides RERhSn (RE = Ho -Yb) and ScTSn (T = Pd, Pt) were prepared by reaction of the elements in sealed tantalum tubes in a high-frequency furnace, by arc-melting, or by a tin-flux technique in quartz tubes. The rhodium based stannides crystallize with the ZrNiAl type structure, space group P6̄2m. The four structures were refined from single crystal X-ray data: a = 754.5(3), c = 377.1(1) pm, wR2 = 0.0357, 233 F2 values for HoRhSn, a = 753.3(1), c = 372.16(8) pm, wR2 = 0.0721, 233 F2 values for ErRhSn, a = 753.7(3), c = 369.0(2) pm, wR2 = 0.0671,233 F2 values for TmRhSn, and a = 753.17(5), c = 366.53(4) pm, wR2 = 0.0566, 180 F2 values for YbRhSn with 14 parameters for each refinement. ScPdSn and ScPtSn adopt the HfRhSn type, a superstructure of ZrNiAl, space group P6̄2c: a = 747.5(1), c = 710.2(1) pm, for ScPdSn, and a = 738.37(9), c = 729.47(9) pm, wR2 = 0.0452,369 F2 values, 18 variables for ScPtSn. Structural motifs in these stannides are transition metal centered trigonal prisms formed by the rare earth and tin atoms. While these prisms are regular in the rhodium based stannides, significant distortions occur in ScPdSn and ScPtSn. The formation of the superstructure can be ascribed to packing reasons. The shortest interatomic distances occur between the transition metal (T) and tin atoms. These atoms form three-dimensional [FSn] networks in which the rare earth atoms fill distorted hexagonal channels. The series RERhSn displays a somewhat unique behavior. The a lattice parameter is more or less independent of the rare earth element, while the c lattice parameter shows the expected lanthanoid contraction. 119Sn Mössbauer spectroscopic data of the rhodium stannides show signals at isomer shifts varying from 1.77 to 1.82 mm/s subject to quadrupole splitting between 0.75 to 0.82 mm/s.

2007 ◽  
Vol 62 (12) ◽  
pp. 1574-1580 ◽  
Author(s):  
Roman Zaremba ◽  
Ute Ch. Rodewald ◽  
Rainer Pöttgen

The indides RE14T3In3 (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y4IrIn were synthesized from the elements by arc-melting and subsequent annealing for crystal growth. Their structures were characterized on the basis of X-ray powder and single crystal data: Lu14Co3In3-type, space group P42/nmc, a = 970.2(1), c = 2340.7(5) pm for Y13.95Pd3In3.05, a = 959.7(1), c = 2309.0(5) pm for Ho14Pd2.95In3, a = 955.5(1), c = 2305.1(5) pm for Er14Pd3In3, a = 950.9(1), c = 2291.6(5) pm for Tm13.90Pd3In3.10, a = 944.4(1), c = 2275.5(5) pm for Lu13.93Pd3In3.07, a = 962.9(1), c = 2343.0(5) pm for Y13.86Ir2.97In3.02, a = 967.6(1), c = 2347.8(5) pm for Y13.92Pt3.05In2.91, and Gd4RhIn-type, space group F 4̅3m, a = 1368.6(2) pm for Y4IrIn. The main structural motifs are transition metal-centered trigonal prisms of the rare earth elements which are condensed to twodimensional networks in the RE14T3In3 indides and to a three-dimensional one in Y4IrIn. The indium atoms in both structure types show segregation in the metal-rich matrix, i. e. In2 dumbbells in the RE14T3In3 indides (309 pm In2-In2 in Y13.86Ir2.97In3.02) and In4 tetrahedra (322 pm In-In) in Y4IrIn. The crystal chemical peculiarities of both structure types are discussed.


2008 ◽  
Vol 63 (9) ◽  
pp. 1127-1130 ◽  
Author(s):  
Falko M. Schappacher ◽  
Ute Ch. Rodewald ◽  
Rainer Pöttgen

New intermetallic compounds RE4TCd (RE = Y, La-Nd, Sm, Gd-Tm, Lu; T = Ni, Pd, Ir, Pt) were synthesized by melting of the elements in sealed tantalum tubes in a highfrequency furnace. They crystallize with the Gd4RhIn-type structure, space group F 4̄3m, Z = 16. The four gadolinium compounds were characterized by single crystal X-ray diffractometer data: a = 1361.7(1) pm, wR2 = 0.062, 456 F2 values, 19 variables for Gd4NiCd; a = 1382.1(2) pm, wR2 = 0.077, 451 F2 values, 19 variables for Gd4PdCd; a = 1363.6(2) pm, wR2 = 0.045, 494 F2 values, 19 variables for Gd4IrCd; a = 1379.0(1) pm, wR2 = 0.045, 448 F2 values, 19 variables for Gd4PtCd. The rare earth atoms build up transition metal-centered trigonal prisms which are condensed via common corners and edges, leading to three-dimensional adamantane-related networks. The cadmium atoms form Cd4 tetrahedra which fill voids left in the prisms’ network.


2017 ◽  
Vol 72 (11) ◽  
pp. 775-780
Author(s):  
Daniel Voßwinkel ◽  
Rainer Pöttgen

AbstractPolycrystalline RERh6Si4 (RE=La, Nd, Tb, Dy, Er, Yb) samples can be synthesized by arc-melting of the elements. Single crystals of LaRh6Si4, NdRh6Si4 and YbRh6Si4 were synthesized from the elements in bismuth fluxes (non-reactive flux medium). The structures were refined on the basis of single-crystal X-ray diffractometer data: LiCo6P4 type, P6̅m2, a=700.56(3), c=380.55(1) pm, wR2=0.0257, 317 F2 values, 19 variables for LaRh6Si4, a=698.4(5), c=377.7(2) pm, wR2=0.0578, 219 F2 values, 19 variables for NdRh6Si4 and a=696.00(3), c=371.97(1) pm, wR2=0.0440, 309 F2 values, 19 variables for YbRh6Si4. The rhodium and silicon atoms build up three-dimensional, covalently bonded [Rh6Si4]δ− polyanionic networks with Rh–Si distances ranging from 239 to 249 pm. The rare earth atoms fill larger cavities within channels of these networks and they are coordinated by six silicon and twelve rhodium atoms in the form of hexa-capped hexagonal prisms.


2009 ◽  
Vol 64 (2) ◽  
pp. 184-188 ◽  
Author(s):  
Frank Tappe ◽  
Rainer Pöttgen

The rare earth-rich intermetallic compounds RE23T7CD4(RE = La-Nd, Sm, Gd, Tb; T = Co, Ni, Ru, Rh, Ir, Pt) were synthesized by melting of the elements in sealed tantalum tubes in a high frequency furnace. They crystallize with the Pr23Ir7Mg4-type structure, space group P63mc, Z = 2. The structures of La23Pt7Cd4 (a = 1025.4(2), c = 2319.5(5) pm, wR2 = 0.0425, 2587 F2, 74 variables), La23Ru6.87(1)Cd4 (a = 1015.0(2), c = 2282.8(4) pm, wR2 = 0.0383, 2459 F2, 75 variables), and Nd23Rh7Cd4 (a = 990.0(2), c = 2239.0(5) pm, wR2 = 0.0507, 2350 F2, 74 variables) were refined from single crystal X-ray diffractometer data. Central structural motifs of the RE23 T7Cd4 compounds are transition metal-centered trigonal prisms of rare earth atoms and Cd4 tetrahedra. The RE6T prisms are condensed via common edges and corners, leading to three-dimensional networks. Typical interatomic distances in the prismatic network and in the Cd4 tetrahedra are 295 - 313 pm La-Pt and 319 - 325 pm Cd-Cd, respectively (examplarily for La23Pt7Cd4)


2013 ◽  
Vol 68 (5-6) ◽  
pp. 625-634 ◽  
Author(s):  
Bastian Reker ◽  
Samir F. Matar ◽  
Ute Ch. Rodewald ◽  
Rolf-Dieter Hoffmann ◽  
Rainer Pöttgen

Small single crystals of the Sm5Ge4-type (space group Pnma) germanides RE2Nb3Ge4 (RE = Sc, Y, Gd-Er, Lu) and Sc2Ta3Ge4 were synthesized by arc-melting of the respective elements. The samples were characterized by powder and single-crystal X-ray diffraction. In all structures, except for Sc2.04Nb2.96Ge4 and Sc2.19Ta2.81Ge4, the rare earth and niobium atoms show full ordering on the three crystallographically independent samarium sites of the Sm5Ge4 type. Two sites with coordination number 6 are occupied by niobium, while the slightly larger site with coordination number 7 is filled with the rare earth element. Small homogeneity ranges with RE=Nb and RE=Ta mixing can be expected for all compounds. The ordered substitution of two rare earth sites by niobium or tantalum has drastic effects on the coordination number and chemical bonding. This was studied for the pair Y5Ge4/Y2Nb3Ge4. Electronic structure calculations show larger charge transfer from yttrium to germanium for Y5Ge4, contrary to Y2Nb3Ge4 which shows stronger covalent bonding due to the presence of Nb replacing Y at two sites


1995 ◽  
Vol 50 (4) ◽  
pp. 577-580 ◽  
Author(s):  
H. Szillat ◽  
Hk. Müller-Buschbaum

Single crystals of (Cu0.22Mg0.78)BaNd2Mo4O16 have been prepared by crystallization from melts and investigated by X-ray methods. The compound crystallizes monoclinically, space group C62h - C12/c1, Z = 4, a = 5.351(1), b = 12.891(2), c = 19.391(4) Å,β = 90.899(14)° and is isotypic to CuKHo2Mo4O16. The crystal structure is dominated by BaO10 and NdO8 polyhedra forming a three-dimensional polyhedra network, which is filled by axially distorted (Cu,Mg)O6 octahedra and MoO4 tetrahedra.


1997 ◽  
Vol 12 (4) ◽  
pp. 252-254 ◽  
Author(s):  
G. Ghosh ◽  
G. V. Narasimha Rao ◽  
V. S. Sastry ◽  
A. Bharathi ◽  
Y. Hariharan ◽  
...  

X-ray powder diffraction data of CoSi are reported. The sample was prepared by an arc melting process and has a cubic structure (space group P213, space group No. 198) with lattice parameter a=4.4427 Å, Dx=6.591 gcm−3, Z=4, and I/Ic=1.03.


1979 ◽  
Vol 34 (8) ◽  
pp. 1057-1058 ◽  
Author(s):  
Axel Czybulka ◽  
Günter Steinberg ◽  
Hans-Uwe Schuster

In the systems Li-M-X = (M = Y, Gd; X = Si, Ge) the compounds LiYSi, LiYGe and LiGdGe were prepared. Their crystal structures were determined by X-ray investigations. They crystallize hexagonally (space group P 6̄2m), and a C22-(Fe2P-type) lattice was found


ChemInform ◽  
2010 ◽  
Vol 30 (47) ◽  
pp. no-no
Author(s):  
O. I. Bodak ◽  
Yu. K. Gorelenko ◽  
V. I. Yarovets ◽  
I. D. Shcherba ◽  
G. A. Mel'nik ◽  
...  

1995 ◽  
Vol 50 (2) ◽  
pp. 175-179 ◽  
Author(s):  
Rainer Pöttgen

The title compound has been obtained by arc-melting of the elemental components and subsequent annealing at 800 °C. It crystallizes in the orthorhombic space group Immm, a = 430.3(1), b = 1235.0(2), c = 967.6(3) pm, V = 0.5142(2) nm3, Z = 2. The structure has been determined from single-crystal X-ray data and refined to R = 0.0181 for 747 F2 values and 28 variables. It is of a new type and can be described as a ternary ordered version of the binary La3Al11-type structure. Dy3Co6Sn5 is built up from DyCo2Sn2 and DyCo2Sn slabs with ThCr2Si2 and Cu3Au-like atomic arrangements, respectively. Its crystal chemistry is compared with that of structurally related rare earth transition metal gallides.


Sign in / Sign up

Export Citation Format

Share Document