Über die Dialkaliacetylendicarboxylate Na2(C2(COO)2)(H2O)4 und K2(C2(COO)2)(H2O) / On Dialkali Acetylenedicarboxylates Na2(C2(COO)2)(H2O)4 and K2(C2(COO)2)(H2O)

2004 ◽  
Vol 59 (8) ◽  
pp. 903-909 ◽  
Author(s):  
Heinrich Billetter ◽  
Ingo Pantenburg ◽  
Uwe Ruschewitz

AbstractFrom aqueous solutions containing acetylenedicarboxylic acid and Na2CO3 or KOH single crystals of Na2(C2(COO)2)(H2O)4 (P21/n, Z = 2) and K2(C2(COO)2)(H2O) (P1̅, Z = 2) were obtained by slow evaporation of the solvent. In Na2(C2(COO)2)(H2O)4 the sodium atom is co-ordinated almost octahedrally by three water molecules and three oxygen atoms of the carboxylate ligands. These octahedra are connected to layers, which are held together by hydrogen bonds. In K2(C2(COO)2)(H2O) two crystallographic distinct potassium ions exist both seven co-ordinate by oxygen atoms stemming from water molecules and carboxylate ligands. These KO7 polyhedra are linked to a threedimensional structure by the bifunctional carboxylate anions and the water molecules.

2002 ◽  
Vol 57 (12) ◽  
pp. 1375-1381 ◽  
Author(s):  
Frauke Hohn ◽  
Heinrich Billetter ◽  
Ingo Pantenburg ◽  
Uwe Ruschewitz

From a solution of Ni(CH3COO)2 ∙ 4 H2O and acetylenedicarboxylic acid in deionized water single crystals of Ni(C2(COO)2)(H2O)4 ∙ 2 H2O(P21/a, Z = 2, isotypic to Co(C2(COO)2)(H2O)4 ∙ 2 H2O) were obtained by slow evaporation of the solvent. In the solid state structure nickel is octahedrally surrounded by four water molecules and two oxygen atoms of the carboxylate anions. These octahedra are connected to chains by the dicarboxylates. Heating the hexahydrate to 100 °C in a stream of argon leads to Ni(C2(COO)2)(H2O)2 (C2/c, Z = 4, isotypic to Mn[C2(COO)2] ∙ 2 H2O). Here, the NiO6 octahedron is built by two water molecules and four oxygen atoms of the dicarboxylate ligands, which connect the Ni octahedra to a three-dimensional network. Thermoanalytical investigations show another mass loss at about 200 °C, which leads to non-crystalline products. Finally, at about 400 °C NiO is formed. Measurements of the magnetic susceptibilities result in the expected behaviour for Ni2+ in an octahedral co-ordination (3A2 ground state). The effective magnetic moment at room temperature is μeff = 3.20 μB.


1987 ◽  
Vol 42 (8) ◽  
pp. 972-976 ◽  
Author(s):  
Christian Robl

AbstractSingle crystals of EA[Q(NO2)2O4] · 4H2O (EA = Ca. Sr) were grown in aqueous silicagel. Ca2+ has CN 8. It is surrounded by 4 oxygen atoms of two bis-chelating [C6(NO2)2O4]2- ions and 4 water molecules, which form a distorted, bi-capped trigonal prism. Sr2+ is coordinated similarly, with an additional water molecule joining the coordination sphere to yield CN 8+1. Corrugated chains extending along [010] and consisting of EA2+ and nitranilate ions are the main feature of the crystal structure. Adjacent chains are interlinked by hydrogen bonds.


1988 ◽  
Vol 43 (8) ◽  
pp. 993-997 ◽  
Author(s):  
Christian Robl

AbstractSingle crystals of Ca2[C6H2(COO)4]·6H2O were grown in aqueous silica gel. Ca2+ has CN 6+2. The coordination polyhedron is formed by three water molecules and five oxygen atoms of carboxylate groups. Six oxygen atoms are closely bound (235,9-243,9 pm), the two remaining coordination partners are considerably more remote from Ca2+ (268,2 and 273,8 pm). COO- groups chelate Ca2+ in an asymmetric manner, but the C -O bond lengths do not differ markedly (125,2-126,3 pm). The connection of Ca2+ with [C6H2(COO)4]4- leads to rigid layers. Adjacent layers are interlinked by hydrogen bonds. Those oxygen atoms which are weakly bound to Ca2+ are favoured as proton acceptors in hydrogen bonds. The COO groups are tilted differently against the C6-ring plane. One is approximately coplanar, but the other is oriented almost perpendicularly.


2009 ◽  
Vol 64 (10) ◽  
pp. 1093-1097 ◽  
Author(s):  
Irena Stein ◽  
Uwe Ruschewitz

By slow diffusion of pyridine (py) into an aqueous solution containing the respective metal salt and acetylenedicarboxylic acid (H2ADC), single crystals of coordination polymers of composition 1∞[MII(H2O)2(py)2ADC] with MII = Zn (1) and Cd (2) were obtained. The crystal structures consist of octahedral MIIN2O4 units, which are connected to chains via acetylenedicarboxylate dianions. Hydrogen bonds between O atoms of the dianions and of the water molecules lead to the formation of layers perpendicular to [010]. The structure is further held together by weak aromatic stacking interactions between the pyridine ligands.


1992 ◽  
Vol 47 (11) ◽  
pp. 1561-1564 ◽  
Author(s):  
Christian Robl ◽  
Stephanie Hentschel

Colourless monoclinic single crystals of Y2[C6(COO)6]· 14H2O were grown in aqueous silica gel (space group P21/n, a = 847.5(1), b = 923.4(2), c = 1632.0(3) pm, β = 100.33(1)°, Ζ = 2, 223 parameters, 1784 reflections, Rg = 0.0357). Y3+ is coordinated by 5 water molecules and 3 oxygen atoms of the mellitate anion in a dodecahedral fashion. Y3+ and [C6(COO)6]6- ions are linked by coordinative bonds, yielding infinite chains of composition Y2(H2O)10[C6(COO)6] extending parallel to [100]. Hydrogen bonds connect adjacent chains.


1990 ◽  
Vol 45 (11) ◽  
pp. 1499-1502 ◽  
Author(s):  
Christian Robl ◽  
Stephanie Hentschel

Colorless orthorhombic single crystals of Be[C2(COO)2] · 4 H2O were grown in aqueous silica gel. Space group Cmcm, α = 1004.7(1), b = 675.0(1), c = 1262.4(2) pm, Rg = 0.0264. The crystal structure consists of Be(H2O)42+ tetrahedra and planar [C2(COO)2]2- anions linked together by strong asymmetric hydrogen bonds. A layer-like arrangement extending parallel (010) made up by [C2(COO)2]2- anions and hydrogen bound water molecules of the Be(H2O)42+ tetrahedra is the primary structural feature of Be[C2(COO)2] · 4H2O. These layers are stacked and interlinked by coordinative bonds between Be2+ and H2O to yield a rigid three-dimensional framework. Thermal decomposition commences with endothermic loss of water of crystallisation at 160 °C followed by several steps of exothermic degradation yielding finally a soot-like amorphous residue.


2015 ◽  
Vol 71 (11) ◽  
pp. 1384-1387
Author(s):  
Marwen Chouri ◽  
Habib Boughzala

The title compound bis(1,4-diazoniabicyclo[2.2.2]octane) di-μ-chlorido-bis[tetrachloridobismuthate(III)] dihydrate, (C6H14N2)2[Bi2Cl10]·2H2O, was obtained by slow evaporation at room temperature of a hydrochloric aqueous solution (pH = 1) containing bismuth(III) nitrate and 1,4-diazabicyclo[2.2.2]octane (DABCO) in a 1:2 molar ratio. The structure displays a two-dimensional arrangement parallel to (100) of isolated [Bi2Cl10]4−bioctahedra (site symmetry -1) separated by layers of organic 1,4-diazoniabicyclo[2.2.2]octane dications [(DABCOH2)2+] and water molecules. O—H...Cl, N—H...O and N—H...Cl hydrogen bonds lead to additional cohesion of the structure.


2019 ◽  
Author(s):  
Roberto Köferstein

Triclinic single crystals of Cu2(H2O)4[C4H4N2][C6H2(COO)4]·2H2O have been grown in anaqueous silica gel. Space group P-1 (Nr. 2), a = 723.94(7) pm, b = 813.38(14) pm, c = 931.0(2) pm, α = 74.24(2)°, β = 79.24(2)°, γ = 65.451(10)°, V = 0.47819(14) nm3, Z = 1. Cu2+ is coordinated in a distorted, octahedral manner by two water molecules, three oxygen atoms ofthe pyromellitate anions and one nitrogen atom of pyrazine (Cu—O 194.1(2)–229.3(3) pm;Cu–N 202.0(2) pm). The connection of Cu2+ and [C6H2(COO)4)]4− yields infinite strands,which are linked by pyrazine molecules to form a two-dimensional coordination polymer.Thermogravimetric analysis in air showed that the dehydrated compound was stable between175 and 248 °C. Further heating yielded CuO.


Author(s):  
Ananda S. Amarasekara ◽  
Dominique T. Sterling-Wells ◽  
Carlos Ordonez ◽  
Marie-Josiane Ohoueu ◽  
Marina S. Fonari

In the title calcium levulinate complex, [Ca(C5H7O3)2(H2O)2]n, the Ca2+ion lies on a twofold rotation axis and is octacoordinated by two aqua ligands and six O atoms from four symmetry-related carboxylate ligands, giving a distorted square-antiprismatic coordination stereochemistry [Ca—O bond-length range = 2.355 (1)–2.599 (1) Å]. The levulinate ligands act both in a bidentate carboxylO,O′-chelate mode and in a bridging mode through one carboxyl O atom with an inversion-related Ca2+atom, giving a Ca...Ca separation of 4.0326 (7) Å. A coordination polymeric chain structure is generated, extending along thec-axial direction. The coordinating water molecules act as double donors and participate in intra-chain O—H...O hydrogen bonds with carboxyl O atoms, and in inter-chain O—H...O hydrogen bonds with carbonyl O atoms, thus forming an overall three-dimensional structure.


1993 ◽  
Vol 48 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Christian Robl ◽  
Mona Frost

Colourless triclinic single crystals of Na6[TeMo6O24] · 22 H2O were grown from aqueous solution (space group P 1, a = 1030.89(9), b = 1056.7(1), c = 1106.32(9) pm, α = 90.120(7), β = 115.220(6), γ = 105.195(7), Ζ = 1, 295 Κ, 336 parameters, 3181 reflections, Rg = 0.0186). There are three crystallographically independent Na+ cations. Two of them are coordinated octahedrally by water molecules only. The third Na+ cation is bound to five H2O and one oxygen atom (O(4)) belonging to the Anderson-Evans type anion [TeMo6O24]6-. The sodium-centered coordination octahedra are linked by common edges exclusively formed by water molecules to yield chain-like polycations {Na3(H2O)11}n,3n+ which are bound by the Na(1)-O(4) contact to the anions situated on crystallographic centers of inversion forming a layer-like arrangement. Further connections between the polycations and the [TeMo6O24]6- anions are established by hydrogen bonds involving all the oxygen atoms of the anion except O(4) as almost equivalent proton acceptors regardless of their bonding mode to Te or Mo.


Sign in / Sign up

Export Citation Format

Share Document