Subcellular Compartmentation of Indole-3-acetic Acid in Mesophyll Cells of Spinacia oleracea

1981 ◽  
Vol 36 (7-8) ◽  
pp. 679-685 ◽  
Author(s):  
B. Heilmann ◽  
W. Hartung ◽  
H. Gimmler

Abstract A compartmental analysis of the distribution of the plant hormone indole-3-acetic acid (IAA) was performed with mesophyll cells of spinach leaves. The results indicated that up to about 45% of the total amount of free IAA in the laminae of spinach is localized within the chloroplasts, although these organelles occupy only about 7% of the tissue volume. This distribution is due to the dissociation properties of IAA which has a pK a of 4,7. The chloroplast envelope is easily permeable for the undissociated acid (IAAH) and less permeable for the anion (IAA"). The rate of uptake of LAA by chloroplasts was linearly dependent on the IAAH concentration gradient between medium and stroma. Uptake was increased by lowering the extraplastidic pH or by alkalization of the stroma during illumination. In illuminated chloroplasts, IAA was accumulated up to 4 fold compared to the surrounding medium owing to the pH gradient between the medium (pH 7.6) and the stroma (pH 8.0). The unexpectedly high plastidic IAA concentration observed in the dark (concentration ratio stroma/medium was about 2) suggested binding of IAA to chloroplast components. Due to this binding, the IAA distribution between medium and chloroplasts must not be used for calculating the stroma pH, as is possible with ABA. However, from the different distribution of IAA in light and darkness the light-induced alkalization of the chloroplast stroma can be calculated.

1982 ◽  
Vol 37 (3-4) ◽  
pp. 174-178 ◽  
Author(s):  
B. Heilmann ◽  
W. Hartung ◽  
H. Gimmler

Abstract Using [14C]tryptophan as a precursor, the intracellular localization of indole-3-acetic acid biosynthesis in spinach mesophyll cells was investigated. Chloroplasts as well as extraplastidic compartments were able to transform tryptophan into indole-3-acetic acid.The cofactor requirement of plastidic and extraplastidic indole-3-acetic acid synthesis is shown.Light and abscisic acid treatment inhibited preparations.


2016 ◽  
Vol 83 (1) ◽  
Author(s):  
Raúl Donoso ◽  
Pablo Leiva-Novoa ◽  
Ana Zúñiga ◽  
Tania Timmermann ◽  
Gonzalo Recabarren-Gajardo ◽  
...  

ABSTRACT Several bacteria use the plant hormone indole-3-acetic acid (IAA) as a sole carbon and energy source. A cluster of genes (named iac) encoding IAA degradation has been reported in Pseudomonas putida 1290, but the functions of these genes are not completely understood. The plant-growth-promoting rhizobacterium Paraburkholderia phytofirmans PsJN harbors iac gene homologues in its genome, but with a different gene organization and context than those of P. putida 1290. The iac gene functions enable P. phytofirmans to use IAA as a sole carbon and energy source. Employing a heterologous expression system approach, P. phytofirmans iac genes with previously undescribed functions were associated with specific biochemical steps. In addition, two uncharacterized genes, previously unreported in P. putida and found to be related to major facilitator and tautomerase superfamilies, are involved in removal of an IAA metabolite called dioxindole-3-acetate. Similar to the case in strain 1290, IAA degradation proceeds through catechol as intermediate, which is subsequently degraded by ortho-ring cleavage. A putative two-component regulatory system and a LysR-type regulator, which apparently respond to IAA and dioxindole-3-acetate, respectively, are involved in iac gene regulation in P. phytofirmans. These results provide new insights about unknown gene functions and complex regulatory mechanisms in IAA bacterial catabolism. IMPORTANCE This study describes indole-3-acetic acid (auxin phytohormone) degradation in the well-known betaproteobacterium P. phytofirmans PsJN and comprises a complete description of genes, some of them with previously unreported functions, and the general basis of their gene regulation. This work contributes to the understanding of how beneficial bacteria interact with plants, helping them to grow and/or to resist environmental stresses, through a complex set of molecular signals, in this case through degradation of a highly relevant plant hormone.


2012 ◽  
Vol 25 (1) ◽  
pp. 303-307 ◽  
Author(s):  
Jana Bulíčková ◽  
Romana Sokolová ◽  
Stefania Giannarelli ◽  
Beatrice Muscatello

2021 ◽  
Author(s):  
Arnaud-Thierry Djami-Tchatchou ◽  
Zipeng Alex Li ◽  
Paul Stodghill ◽  
Melanie J. Filiatrault ◽  
Barbara N. Kunkel

The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 ( Pto DC3000). To learn more about the impact of IAA on regulation of Pto DC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta . Collectively the data indicate that IAA modulates many aspects of Pto DC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain Pto DC000 and one of its hosts, Arabidopsis thaliana . However, the mechanisms by which IAA impacts the biology of Pto DC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in Pto DC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.


1976 ◽  
Vol 36 (1) ◽  
pp. 71-76
Author(s):  
JORGEN HILDEN ◽  
FOLKE RoNNIKE ◽  
HENNING SCHOU

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ken-ichiro Hayashi ◽  
Kazushi Arai ◽  
Yuki Aoi ◽  
Yuka Tanaka ◽  
Hayao Hira ◽  
...  

AbstractInactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.


2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Isaac V. Greenhut ◽  
Beryl L. Slezak ◽  
Johan H. J. Leveau

ABSTRACT We show for soil bacterium Enterobacter soli LF7 that the possession of an indole-3-acetic acid catabolic (iac) gene cluster is causatively linked to the ability to utilize the plant hormone indole-3-acetic acid (IAA) as a carbon and energy source. Genome-wide transcriptional profiling by mRNA sequencing revealed that these iac genes, chromosomally arranged as iacHABICDEFG and coding for the transformation of IAA to catechol, were the most highly induced (>29-fold) among the relatively few (<1%) differentially expressed genes in response to IAA. Also highly induced and immediately downstream of the iac cluster were genes for a major facilitator superfamily protein (mfs) and enzymes of the β-ketoadipate pathway (pcaIJD-catBCA), which channels catechol into central metabolism. This entire iacHABICDEFG-mfs-pcaIJD-catBCA gene set was constitutively expressed in an iacR deletion mutant, confirming the role of iacR, annotated as coding for a MarR-type regulator and located upstream of iacH, as a repressor of iac gene expression. In E. soli LF7 carrying the DNA region upstream of iacH fused to a promoterless gfp gene, green fluorescence accumulated in response to IAA at concentrations as low as 1.6 μM. The iacH promoter region also responded to chlorinated IAA, but not other aromatics tested, indicating a narrow substrate specificity. In an iacR deletion mutant, gfp expression from the iacH promoter region was constitutive, consistent with the predicted role of iacR as a repressor. A deletion analysis revealed putative −35/−10 promoter sequences upstream of iacH, as well as a possible binding site for the IacR repressor. IMPORTANCE Bacterial iac genes code for the enzymatic conversion of the plant hormone indole-3-acetic acid (IAA) to catechol. Here, we demonstrate that the iac genes of soil bacterium Enterobacter soli LF7 enable growth on IAA by coarrangement and coexpression with a set of pca and cat genes that code for complete conversion of catechol to central metabolites. This work contributes in a number of novel and significant ways to our understanding of iac gene biology in bacteria from (non-)plant environments. More specifically, we show that LF7's response to IAA involves derepression of the MarR-type transcriptional regulator IacR, which is quite fast (less than 25 min upon IAA exposure), highly specific (only in response to IAA and chlorinated IAA, and with few genes other than iac, cat, and pca induced), relatively sensitive (low micromolar range), and seemingly tailored to exploit IAA as a source of carbon and energy.


Sign in / Sign up

Export Citation Format

Share Document