Brominated Secondary Compounds from the Marine Sponge Verongia aerophoba and the Sponge Feeding Gastropod Tylodina perversa

1993 ◽  
Vol 48 (7-8) ◽  
pp. 640-644 ◽  
Author(s):  
Ratana Teeyapant ◽  
Patricia Kreis ◽  
Victor Wray ◽  
Ludger Witte ◽  
Peter Proksch

Abstract Analysis of the marine sponge Verongia aerophoba from the Canary islands afforded the brominated secondary constituents isofistularin-3, aerophobin-1 and aerophobin-2 which are probably involved in the chemical defense of the sponge. In addition the yellow pigment uranidine and the unusual sterol aplysterol were isolated. The patterns of brominated compounds were almost superimposable when samples of V. aerophoba from different islands were com­ pared by HPLC indicating de novo synthesis by the sponge or by endosymbiotic microorgan­isms rather than uptake by filter feeding. The only differences observed between the different samples analyzed were with regard to the total concentrations of brominated compounds which varied from 7.2-12.3% of the dry weight dependent on the different collection sites. The Opisthobranch gastropod Tylodina perversa is specialized for feeding on V. aerophoba. Chemical analysis of the gastropod revealed the sponge constituents uranidine, isofistularin-3, aerophobin-1 and aerophobin-2 as well as aerothionin, a further brominated compound which is apparently a biotransform ation product of the brominated sponge constiiuents.

1995 ◽  
Vol 50 (9-10) ◽  
pp. 669-674 ◽  
Author(s):  
A. Supriyono ◽  
B. Schwarz ◽  
V. Wray ◽  
L. Witte ◽  
W. E. G. Müller ◽  
...  

Abstract Analysis of the tropical marine sponge Axinella carteri afforded six unusual alkaloids, including the new brominated guanidine derivative 3-bromo-hymenialdisine. The structure elucidation of the new alkaloid is described. The alkaloid patterns of sponges collected in Indonesia or in the Philippines were shown to be qualitatively identical suggesting de novo synthesis by the sponge or by endosymbiontic microorganisms rather than uptake by filterfeeding. All alkaloids were screened for insecticidal activity as well as for cytotoxicity. The guanidine alkaloids hymenialdisine and debromohymenialdisine exhibited insecticidal activity towards neonate larvae of the polyphagous pest insect Spodoptera littoralis (LD50s of 88 and 125 ppm, respectively), when incorporated into artificial diet and offered to the larvae in a chronic feeding bioassay. The remaining alkaloids, including the new compound, were inactive in this bioassay. Cytotoxicity was studied in vitro using L5178y mouse lymphoma cells. Debromohymenialdisine was again the most active compound (ED50 1.8 μg/ml) followed by hymenialdisine and 3-bromohymenialdisine, which were essentially equitoxic and exhibited ED50s of 3.9 μg/ml in both cases. The remaining alkaloids were inactive against this cell line


1973 ◽  
Vol 51 (10) ◽  
pp. 1931-1937 ◽  
Author(s):  
F. W. Collins ◽  
K. R. Chandorkar

De novo synthesis of fructosans in leaf disks of certain Asteraceae incubated on phosphate-buffered 5% sucrose medium was accompanied by increases in fresh and dry weight and a considerable enhancement in the rate of respiration. Radiorespirometry using 14C-sucrose showed that the respiratory pool was kept at the expense of both exogenous and endogenous substrates. During the initial 24 h of incubation, about 80% or more of the total respiratory carbon was derived from the exogenously supplied sugar. This proportion gradually decreased during the last 48 h to a final value of about 50%. Of the total sugar taken up by the leaf disks, less than 20% was utilized in respiration while more than four-fifths was available for further metabolism including fructosan formation. The respiratory quotient values remained relatively unchanged from 0.8 to 0.9 throughout most of the incubation period and suggested that endogenous substrate other than carbohydrate was drawn into respiratory metabolism.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4344
Author(s):  
David A. Jaramillo ◽  
María J. Méndez ◽  
Gabriela Vargas ◽  
Elena E. Stashenko ◽  
Aída-M. Vasco-Palacios ◽  
...  

Aromas and flavours can be produced from fungi by either de novo synthesis or biotransformation processes. Herein, the biocatalytic potential of seven basidiomycete species from Colombia fungal strains isolated as endophytes or basidioma was evaluated. Ganoderma webenarium, Ganoderma chocoense, and Ganoderma stipitatum were the most potent strains capable of decolourizing β,β-carotene as evidence of their potential as biocatalysts for de novo aroma synthesis. Since a species’ biocatalytic potential cannot solely be determined via qualitative screening using β,β-carotene biotransformation processes, we focused on using α-pinene biotransformation with mycelium as a measure of catalytic potential. Here, two strains of Trametes elegans—namely, the endophytic (ET-06) and basidioma (EBB-046) strains—were screened. Herein, T. elegans is reported for the first time as a novel biocatalyst for the oxidation of α-pinene, with a product yield of 2.9 mg of cis-Verbenol per gram of dry weight mycelia used. The EBB-046 strain generated flavour compounds via the biotransformation of a Cape gooseberry medium and de novo synthesis in submerged cultures. Three aroma-producing compounds were identified via GC–MS—namely, methyl-3-methoxy-4H-pyran-4-one, hexahydro-3-(methylpropyl)-pyrrolo[1,2-a]pyrazine-1,4-dione, and hexahydro-3-(methylphenyl)-pyrrolo[1,2-a]pyrazine-1,4-dione.


1993 ◽  
Vol 70 (02) ◽  
pp. 273-280 ◽  
Author(s):  
Janos Kappelmayer ◽  
Satya P Kunapuli ◽  
Edward G Wyshock ◽  
Robert W Colman

SummaryWe demonstrate that in addition to possessing binding sites for intact factor V (FV), unstimulated peripheral blood monocytes also express activated factor V (FVa) on their surfaces. FVa was identified on the monocyte surface by monoclonal antibody B38 recognizing FVa light chain and by human oligoclonal antibodies H1 (to FVa light chain) and H2 (to FVa heavy chain) using immunofluorescence microscopy and flow cytometry. On Western blots, partially cleaved FV could be identified as a 220 kDa band in lysates of monocytes. In addition to surface expression of FVa, monocytes also contain intracellular FV as detected only after permeabilization by Triton X-100 by monoclonal antibody B10 directed specifically to the Cl domain not present in FVa. We sought to determine whether the presence of FV in peripheral blood monocytes is a result of de novo synthesis.Using in situ hybridization, no FV mRNA could be detected in monocytes, while in parallel control studies, factor V mRNA was detectable in Hep G2 cells and CD18 mRNA in monocytes. In addition, using reverse transcriptase and the polymerase chain reaction, no FV mRNA was detected in mononuclear cells or in U937 cells, but mRNA for factor V was present in Hep G2 cells using the same techniques. These data suggest that FV is present in human monocytes, presumably acquired by binding of plasma FV, and that the presence of this critical coagulation factor is not due to de novo synthesis.


1983 ◽  
Vol 49 (02) ◽  
pp. 069-072 ◽  
Author(s):  
U L H Johnsen ◽  
T Lyberg ◽  
K S Galdal ◽  
H Prydz

SummaryHuman umbilical vein endothelial cells in culture synthesize thromboplastin upon stimulation with phytohaemagglutinin (PHA) or the tumor promotor 12-O-tetradecanoyl-phorbol-13-acetate (TPA). The thromboplastin activity is further strongly enhanced in a time dependent reaction by the presence of gel-filtered platelets or platelet aggregates. This effect was demonstrable at platelet concentrations lower than those normally found in plasma, it may thus be of pathophysiological relevance. The thromboplastin activity increased with increasing number of platelets added. Cycloheximide inhibited the increase, suggesting that de novo synthesis of the protein component of thromboplastin, apoprotein III, is necessary.When care was taken to remove monocytes no thromboplastin activity and no apoprotein HI antigen could be demonstrated in suspensions of gel-filtered platelets, platelets aggregated with thrombin or homogenized platelets when studied with a coagulation assay and an antibody neutralization technique.


1971 ◽  
Vol 68 (1_Supplb) ◽  
pp. S135 ◽  
Author(s):  
R. S. Mathur ◽  
N. Wiqvist ◽  
E. Diczfalusy

1995 ◽  
Vol 269 (2) ◽  
pp. E247-E252 ◽  
Author(s):  
H. O. Ajie ◽  
M. J. Connor ◽  
W. N. Lee ◽  
S. Bassilian ◽  
E. A. Bergner ◽  
...  

To determine the contributions of preexisting fatty acid, de novo synthesis, and chain elongation in long-chain fatty acid (LCFA) synthesis, the synthesis of LCFAs, palmitate (16:0), stearate (18:0), arachidate (20:0), behenate (22:0), and lignocerate (24:0), in the epidermis, liver, and spinal cord was determined using deuterated water and mass isotopomer distribution analysis in hairless mice and Sprague-Dawley rats. Animals were given 4% deuterated water for 5 days or 8 wk in their drinking water. Blood was withdrawn at the end of these times for the determination of deuterium enrichment, and the animals were killed to isolate the various tissues for lipid extraction for the determination of the mass isotopomer distributions. The mass isotopomer distributions in LCFA were incompatible with synthesis from a single pool of primer. The synthesis of palmitate, stearate, arachidate, behenate, and lignocerate followed the expected biochemical pathways for the synthesis of LCFAs. On average, three deuterium atoms were incorporated for every addition of an acetyl unit. The isotopomer distribution resulting from chain elongation and de novo synthesis can be described by the linear combination of two binomial distributions. The proportions of preexisting, chain elongation, and de novo-synthesized fatty acids as a percentage of the total fatty acids were determined using multiple linear regression analysis. Fractional synthesis was found to vary, depending on the tissue type and the fatty acid, from 47 to 87%. A substantial fraction (24-40%) of the newly synthesized molecules was derived from chain elongation of unlabeled (recycled) palmitate.


Sign in / Sign up

Export Citation Format

Share Document