scholarly journals Synthesis and Electrochemical Behavior of Nanostructured Copper Particles on Graphite for Application in Lithium Ion Batteries

2015 ◽  
Vol 229 (9) ◽  
Author(s):  
Björn Karl Licht ◽  
Fabian Homeyer ◽  
Katharina Bösebeck ◽  
Michael Binnewies ◽  
Paul Heitjans

AbstractGraphitic materials are currently the state-of-the-art anode materials for lithium ion secondary batteries. By chemical modification, the electrochemical performance of the pristine materials can be improved. In this paper we report on the preparation of nanostructured copper particles on graphite by thermal decomposition of copper formate. With this technique a novel, simple and low cost method for a homogeneous deposition of nanostructured copper particles on graphite was established. Different amounts of copper were realized and their influence on the electrochemical behavior of the active material was investigated. The copper particles had a size distribution between 50 nm and 300 nm. Electrochemical measurements displayed an improved performance of the synthesized composite material compared to the pristine material. Cyclic voltammetry showed a suppressed cointercalation of solvated lithium and an increased formation of the solid electrolyte interphase (SEI). Battery cycling demonstrated an increased discharge capacity and cycling stability.

Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2021 ◽  
Vol 1036 ◽  
pp. 35-44
Author(s):  
Ling Fang Ruan ◽  
Jia Wei Wang ◽  
Shao Ming Ying

Silicon-based anode materials have been widely discussed by researchers because of its high theoretical capacity, abundant resources and low working voltage platform,which has been considered to be the most promising anode materials for lithium-ion batteries. However,there are some problems existing in the silicon-based anode materials greatly limit its wide application: during the process of charge/discharge, the materials are prone to about 300% volume expansion, which will resultin huge stress-strain and crushing or collapse on the anods; in the process of lithium removal, there is some reaction between active material and current collector, which creat an increase in the thickness of the solid phase electrolytic layer(SEI film); during charging and discharging, with the increase of cycle times, cracks will appear on the surface of silicon-based anode materials, which will cause the batteries life to decline. In order to solve these problems, firstly, we summarize the design of porous structure of nanometer sized silicon-based materials and focus on the construction of three-dimensional structural silicon-based materials, which using natural biomass, nanoporous carbon and metal organic framework as structural template. The three-dimensional structure not only increases the channel of lithium-ion intercalation and the rate of ion intercalation, but also makes the structure more stable than one-dimensional or two-dimensional. Secondly, the Si/C composite, SiOx composite and alloying treatment can improve the volume expansion effection, increase the rate of lithium-ion deblocking and optimize the electrochemical performance of the material. The composite materials are usually coated with elastic conductive materials on the surface to reduce the stress, increase the conductivity and improve the electrochemical performance. Finally, the future research direction of silicon-based anode materials is prospected.


2016 ◽  
Vol 47 (2) ◽  
pp. 249-259 ◽  
Author(s):  
Miriam Steinhauer ◽  
Thomas Diemant ◽  
Christopher Heim ◽  
R. Jürgen Behm ◽  
Norbert Wagner ◽  
...  

2018 ◽  
Vol 6 (15) ◽  
pp. 6183-6205 ◽  
Author(s):  
Wanlin Wang ◽  
Weijie Li ◽  
Shun Wang ◽  
Zongcheng Miao ◽  
Hua Kun Liu ◽  
...  

With the high consumption and increasing price of lithium resources, sodium ion batteries (SIBs) have been considered as attractive and promising potential alternatives to lithium ion batteries, owing to the abundance and low cost of sodium resources, and the similar electrochemical properties of sodium to lithium.


2017 ◽  
Vol 5 (22) ◽  
pp. 10885-10894 ◽  
Author(s):  
Qiang Shi ◽  
Shuai Heng ◽  
Qunting Qu ◽  
Tian Gao ◽  
Weijie Liu ◽  
...  

Constructing a robust and elastic solid electrolyte interphase (SEI) on a graphite anode is an important strategy to suppress lithium-inventory loss and to prolong the lifespan of the state-of-the-art lithium-ion batteries.


MRS Advances ◽  
2020 ◽  
Vol 5 (43) ◽  
pp. 2221-2229
Author(s):  
G. Greco ◽  
S. Passerini

AbstractThe most promising candidate as an everyday alternative to lithium-ion batteries (LIBs) are sodium-ion batteries (NIBs). This is not only due to Na abundance, but also because the main principles and cell structure are very similar to LIBs. Due to these benefits, NIBs are expected to be used in applications related to large-scale energy storage systems and other applications not requiring top-performance in terms of volumetric capacity. One important issue that has hindered the large scale application of NIBs is the anode material. Graphite and silicon, which have been widely applied as anodes in NIBs, do not show great performance. Hard carbons look very promising in terms of their abundance and low cost, but they tend to suffer from instability, in particular over the long term. In this work we explore a carbon-coated TiO2 nanoparticle system that looks very promising in terms of stability, abundance, low-cost, and most importantly that safety of the cell, since it does not suffer from potential sodium plating during cycling. Maintaining a nano-size and consistent morphology of the active material is a crucial parameter for maintaining a well-functioning cell upon cycling. In this work we applied Anomalous Small Angle X-Ray Scattering (ASAXS) for the first time at the Ti K-edge of TiO2 anatase nanoparticles on different cycled composite electrodes in order to have a complete morphological overview of the modifications induced by sodiation and desodiation. This work also demonstrates for the first time that the nanosize of the TiO2 is maintained upon cycling, which is in agreement with the electrochemical stability.


2019 ◽  
Vol 7 (8) ◽  
pp. 3874-3881 ◽  
Author(s):  
Min Cui ◽  
Lin Wang ◽  
Xianwei Guo ◽  
Errui Wang ◽  
Yubo Yang ◽  
...  

A mass-produced and low-cost hierarchical mesoporous/macroporous silicon-based composite material with an ample porous structure and dual carbon protective layers has been rationally designed and constructed. The Si/SiO2@C composite anode materials for LIBs show enhanced electrochemical properties.


2019 ◽  
Vol 7 (40) ◽  
pp. 23019-23027 ◽  
Author(s):  
Zongfeng Sha ◽  
Shengqiang Qiu ◽  
Qing Zhang ◽  
Zhiyong Huang ◽  
Xun Cui ◽  
...  

A solvothermal polymerization approach to graphene/poly(methyl methacrylate) thermoplastic nanocomposites as low-cost alternative anode materials with superior lithium storage capability.


Sign in / Sign up

Export Citation Format

Share Document