Thermo Acoustical Characterization of Several Inorganic Salts in Polyvinyl Pyrrolidone at 303.15 K, 308.15 K, 313.15 K

2017 ◽  
Vol 231 (9) ◽  
Author(s):  
K. Rathina ◽  
H.B. Ramalingam ◽  
R. Mahalakshmi ◽  
M. Umadevi

AbstractThe ultrasonic velocity, density and viscosity values of liquid mixture of aqueous polyvinyl pyrrolidone with aqueous zinc sulphate, manganese sulphate, zinc chloride and manganese chloride have been studied at 303.15 K, 308.15 K and 313.15 K. Relative association, surface tension, modified surface tension, adiabatic compressibility, acoustic impedance, intermolecular free length relaxation time and the nonlinearity parameter have been determined for various compositions. The variation observed in the results suggest that the presence of strong polymer-solvent interactions.

Ultrasonic speed, density and viscosity of binary liquid mixtures of aqueous ammonium per sulphate with other sulphate solutions at 303.15 K have been measured. From these experimental data, the adiabatic compressibility, intermolecular free length, internal pressure, acoustic impedance, relaxation time, molar volume, classical absorption coefficient and surface tension have been computed. The excess viscosity, excess compressibility, excess intermolecular free length, excess acoustic impedance and excess molar volume values are evaluated to find the nature and the extent of the interactions between the constituent molecules of the liquid mixture systems


2018 ◽  
Vol 232 (3) ◽  
pp. 393-408 ◽  
Author(s):  
Dinesh Kumar ◽  
Shashi Kant Sharma

AbstractDensities,ρand ultrasonic speeds, u of L-histidine (0.02–0.12 mol·kg−1) in water and 0.1 mol·kg−1aqueous citric acid solutions were measured over the temperature range (298.15–313.15) K with interval of 5 K at atmospheric pressure. From these experimental data apparent molar volume ΦV, limiting apparent molar volume ΦVOand the slopeSV, partial molar expansibilities ΦEO, Hepler’s constant, adiabatic compressibilityβ, transfer volume ΦV, trO, intermolecular free length (Lf), specific acoustic impedance (Z) and molar compressibility (W) were calculated. The results are interpreted in terms of solute–solute and solute–solvent interactions in these systems. It has also been observed that L-histidine act as structure maker in water and aqueous citric acid.


Author(s):  
B. Sudhamsa ◽  
M. Sarath Babu ◽  
K. Narendra

The speed of sound and density in binary liquid mixture of diethyl carbonate + benzonitrile, + benzaldehyde have been determined at temperatures 298.15, 308.15 and 318.15 K over the whole composition range. The data have been utilized to estimate the excess adiabatic compressibility (βE), excess intermolecular free length (LfE), excess speed of sound (uE) at the above temperatures. The excess values have been found to be useful in estimating the strength of the interactions in the liquid mixtures.


Author(s):  
Baljeet Singh Patial

Ultrasonic velocity, viscosity and density studies on solution of tetrapentylammonium bromide (Pen4NBr) in N,N-dimethylformamide, ethylmethylketone (EMK) and DMF-EMK solvent mixtures containing 0, 20, 40, 60, 80 and 100 mol % of DMF at 298, 308 and 318K have been reported. From the velocity, viscosity and density data values, various parameters namely, the adiabatic compressibility (β), Intermolecular free length (Lf), specific acoustic impedance (Z), free volume (Vf), internal pressure (πi) and relaxation time (τ) have been calculated. All these parameters have been discussed separately to throw light on the solute-solvent and solvent-solvent interactions.


Author(s):  
D. Chinnarao ◽  
M. Sri Latha ◽  
K. Raja ◽  
Ch.V. Padmarao

Density, speed of sound and viscosity have been measured for binary liquid mixture containing Ethyloleate+o-toludine over the entire composition range at temperatures 303.15, 308.15, 313.15 and 318.15 K and at atmospheric pressure. By using these values various parameters like adiabatic compressibility (βad), free volume (Vf), intermolecular free length (Lf), internal pressure (π) and their excess values have been calculated. The intermolecular interactions and structural effects are analyzed on the basis of the measured and derived properties.


2020 ◽  
Vol 10 ◽  
Author(s):  
Bhavi Patel ◽  
Bhavya Salvi ◽  
Vivekanand Mishra ◽  
Ritesh Yadav

Background: The Binary mixtures of the isopropanol/isobutanol/isoamylalcohol with equimolar mixture of ethanol and formamide consists of different ultrasonic properties have been studied at room temperature at a fixed frequency of 2 MHz. The ultrasonic related physical parameters like velocity (U), density (ρ), adiabatic compressibility (βad), intermolecular free length (Lf) ,acoustic impedance (Z) etc. have been studied. The theoretical evaluation of ultrasonic velocity in liquid mixtures offers a transparent method for the study of the nature of molecular interactions in the mixtures besides verifying the applicability of different theories such as Nomoto’s, Van Dael and Vangeel’s, Impedance Dependence relation, Junjie’s relation, Rao’s specific sound velocity relation and Jacobson’s relations, Percentage deviations of theoretical ultrasonic velocities from experimental values in the mixtures of all liquid mixture and also calculated values of ultrasonic velocity from polynomials of for all the schemes with mole fraction (x) of isopropanol/isobutanol/isoamyl alcohol. Objective: The main focus of the present work was to prepare the structural changes associated with the liquid mixtures having weakly interacting components as well as strongly interacting components. The study of molecular is association in mixtures having exact information of thermodynamic mixing properties such as adiabatic compressibility, intermolecular free length, free volume, internal pressure and molar volume and has a great importance in theoretical and applied areas of research. The ultrasonic study has been a subject of active interest during the past many years. This branch of physical sciences has played a great role in deciding the interactions between the molecules of compounds under study not only that, but also it exists a potential tool in evaluating energy exchange between various degrees of freedom and nonlinear properties in binary liquid mixtures. Methods: The binary liquid mixtures were prepared by mixing the two components, by weight, using an electronic analytical balance (Reptech RA2012) accurate to within ±0.0001 g. The average uncertainty in mole fraction of binary mixtures was estimated to be ±0.0001. To avoid losses of solvent due to evaporation, mixtures were stored in specially designed ground-glass airtight ampoules and placed in a dark place to avoid photolytic effects. Results: These empirical fittings of data are described qualitatively and quantitatively using experimental speed data even in the specific interaction predominant region where non-ideal behavior of the mixture is observed. The values of sound velocities and percentage deviation, (after determining the co-efficient in the polynomial equations by applying least squares method) have been compiled in the tables respectively. Conclusion: The ultrasonic velocities and densities for all the three mixtures are measured and the values of are calculated from these values.The observed trends of and indicate the presence of weak interactions and the strength of these interactions follow the order EMM+IPA>EMM+IBA>EMM+IAA. Besides, the ultrasonic velocities gauge from different velocity theories are correlated with the experimentally measured ultrasonic velocities. Among these theories the Jacobson’s velocity equation gives good result between the experimental and theoretical ultrasonic velocity values for all the binary mixtures occupied.


2021 ◽  
Vol 13 (7) ◽  
pp. 4011
Author(s):  
Alfredo Sánchez-Bautista ◽  
Ester M. Palmero ◽  
Alberto J. Moya ◽  
Diego Gómez-Díaz ◽  
M. Dolores La Rubia

There are a lot of research programs focusing on the development of new solvents for carbon dioxide capture. The most important priority should be reducing the energy consumption needed at the regeneration step, but minimizing solvent degradation and its corrosivity is also considered as a priority. In this research, the aqueous blends of 2-amino-2-methyl-1-propanol (AMP: 1 kmol·m−3) and 1-amino-2-propanol (MIPA: 0.1–0.5 kmol·m−3) are characterized in terms of density, viscosity, and surface tension. The carbon dioxide absorption rate and capacity, the regeneration capacity, and the corrosivity of these solvents are also evaluated.


Sign in / Sign up

Export Citation Format

Share Document