scholarly journals Removal of Acid Orange 7 dye from aqueous solutions using polyaniline-modified rice bran: isotherms, kinetics, and thermodynamics

2019 ◽  
Vol 6 (3) ◽  
pp. 203-213 ◽  
Author(s):  
Marzieh Bagheri ◽  
Esmail Mardani

Background: Today, due to increasing usage of dyes in various industrials and their destructive effects on health and environment, it is necessary to remove them from industrial wastes. Although there are few studies on the use of rice bran modified with polyaniline (RB/PANI) for removal of different dyes, but the effect of this adsorbent on the removal of Acid Orange 7 (AO7) dye has not been evaluated yet. Therefore, this study was conducted to investigate the removal of AO7 dye by RB/PANI as an adsorbent. Methods: The adsorbent characteristics were determined using scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy. Also, the adsorbent surface area was measured by Brunauer–Emmett–Teller (BET) technique. The method of one-factor-at-a-time was used to optimize various factors including pH, temperature, and adsorbent dosage. Results: The optimal values for the factors affecting AO7 dye removal were calculated. It was revealed that the maximum dye removal was obtained at pH = 3, temperature = 25˚C, dye concentration = 30 mg/L, adsorbent dosage = 30 mg/L, and contact time= 60 minutes. The maximum removal percentage for RB/PANI was 97.13%. It was also revealed that Langmuir isotherm is the best fitted isotherm model. Conclusion: According to the results, the polyaniline-modified rice bran could be used as an excellent adsorbent for the removal of AO7 from aqueous solutions. The maximum dye removal efficiency for AO7 was obtained at pH = 3. Also, it was revealed that AO7 dye removal follows the pseudo-secondorder kinetic model and it is a spontaneous process.

2019 ◽  
Vol 48 (3) ◽  
pp. 1095-1107 ◽  
Author(s):  
Meng-Jung Tsai ◽  
Jheng-Hua Luo ◽  
Jing-Yun Wu

A rhombus (4,4) grid showing two-fold 2D + 2D → 2D interweaved nets appeared to be a good adsorbent to selectively adsorb and separate anionic methyl orange (MO) and acid orange 7 (AO7) dyes over cationic methylene blue (MB) and malachite green (MG) from water with high adsorption capacities in both darkness and daylight.


2012 ◽  
Vol 32 (6) ◽  
pp. 1394-1400 ◽  
Author(s):  
Yahya Hamzeh ◽  
Alireza Ashori ◽  
Elham Azadeh ◽  
Ali Abdulkhani

2013 ◽  
Vol 330 ◽  
pp. 112-116 ◽  
Author(s):  
Nabilah A. Lutpi ◽  
N. Najihah Jamil ◽  
C.K. Kairulazam C.K. Abdullah ◽  
Yee Shian Wong ◽  
Soon An Ong ◽  
...  

The adsorption of Methylene Blue (MB) and Acid Orange 7 (AO7) dye onto Ananas Comosus Mixed Peels and Leaves (ACMPL) were carried out by conducting four different parameters such as initial concentration, pH, dosage of adsorbent, and contact time. Effect of initial concentration for both dyes showed that higher initial concentration would take longer contact time to attain equilibrium due to higher amount of adsorbate molecules. The effect of pH showed highest percentage removal for MB is at pH 9 which is 95.81%. Meanwhile for AO7 the highest percentage removal is 31.06% at pH 3. The percentage removal of MB had reached the equilibrium at dosage 0.5g while AO7 keep increasing with the increment of adsorbent dosage. The percentage removal of MB and AO7 had increased until hour 2.5 which was from 72.5% to 86.93% and 19.441% to 36.89% respectively and reached equilibrium at 3 hour contact time.


2014 ◽  
Vol 57 ◽  
pp. 87-95 ◽  
Author(s):  
Danna Zhou ◽  
Long Chen ◽  
Changbo Zhang ◽  
Yingtan Yu ◽  
Li Zhang ◽  
...  

1970 ◽  
Vol 45 (1) ◽  
pp. 35-38
Author(s):  
S Rehman Khan ◽  
Asma Inayat ◽  
Amjad Rana

The capability of sawdust for removal of Reactive Yellow (RY 1) and Acid Orange (AO2), from aqueous solutions was studied. The effect of various experimental parameters such as different treatments of sawdust, sorbent dose and pH of solution were studied. The saw dust a relatively abundant and inexpensive material was found to be effective absorbent for the removal of reactive and acid dyes from their aqueous solutions. It was found that the sawdust activated with acid have higher adsorption capacity. It has been found that at initial pH of 2 and at higher sorbent dose reactive and acid dyes were removed more effectively. Key words: Sawdust; Adsorption; Dye removal; Sorbent dose. DOI: 10.3329/bjsir.v45i1.5181 Bangladesh J. Sci. Ind. Res. 45(1), 35-38, 2010


2013 ◽  
Vol 10 (1) ◽  
pp. 16-23 ◽  

C.I. Acid Orange 7 (AO7) commonly used as a textile dye and could be degraded by UV/ZnO, UV/H2O2 and UV/H2O2/Fe (III) (photofenton) processes. In the photocatalytic degradation of dye by UV/ZnO process, effect of some parameters such as UV irradiation time, presence of ZnO and UV irradiation, pH, concentrations of ZnO, dye, H2O2 and ethanol was examined and first order reaction rate constant was calculated equal to 2.39×10-2 min-1 at experimental condition. The semi-log plot of dye concentration versus time was linear, suggesting first order reaction. Efficiency of photodegradation process in the absence of ZnO photocatalyst and UV light was small. Increasing the UV irradiation time increased AO7 removal. Ethanol had inhibitory effect on this process. Maximum AO7 removal was seen at neutral pH area. In the UV/H2O2 process, effect of some parameters such as presence of H2O2 and UV irradiation, amount of H2O2, effect of pH and addition of bicarbonate on the efficiency of dye removal were examined. Absence of each of UV irradiation or H2O2 decreased AO7 removal efficiency near to zero. Increasing H2O2 concentration increased dye removal to some extent but at higher H2O2 concentrations, dye removal efficiency did not increase. Increasing pH to value about 9 increased the AO7 removal efficiency and increasing bicarbonate anion concentration decreased it. Rate constant of AO7 removal by this process was calculated to be equal to 4.221×10-1 min-1 at experimental condition. Also, the order of UV/ H2O2/Fe (III) > UV/ H2O2 > UV/Fe (III) > H2O2/Fe (III), was seen for AO7 removal efficiency of these processes. Increasing Fe (III) and oxalate concentration increased dye removal efficiency.


2004 ◽  
Vol 40 (2) ◽  
pp. 163-170 ◽  
Author(s):  
Joaquim Pedro Silva ◽  
Sónia Sousa ◽  
Isolina Gonçalves ◽  
John J. Porter ◽  
Suzana Ferreira-Dias

2015 ◽  
Vol 5 (4) ◽  
pp. 610-618 ◽  
Author(s):  
Qian Liu ◽  
Lujie Zhang ◽  
Pan Hu ◽  
Ruihua Huang

In this work, activated carbon (AC) coated by chitosan was synthesized and characterized by Fourier transform infrared spectrophotometer and scanning electron microscope (SEM) techniques. The removal of aniline from aqueous solutions by AC coated by chitosan was investigated. The factors affecting the adsorption of aniline onto AC coated by chitosan, including the ratio of AC to chitosan, adsorbent dosage, pH value of solution, initial aniline concentration, and contact time were evaluated. These results showed that the optimum operating conditions were: the ratio of AC to chitosan = 0.5, adsorbent dosage = 0.2 g, and the adsorption of aniline from aqueous solutions had better removal in the concentration range of 20–50 mg/L. This adsorbent allowed high removal toward aniline in a wide range of pH. The equilibrium time was 100 minutes. The Freundlich model exhibited better correlation of the equilibrium adsorption data. The pseudo-second-order kinetic equation could better describe the kinetic behavior of aniline adsorption.


Sign in / Sign up

Export Citation Format

Share Document