scholarly journals In Vitro Evaluation of the Effect of Different Surface Treatments of a Hybrid Ceramic on the Microtensile Bond Strength to a Luting Resin Cement

2019 ◽  
Vol 10 (4) ◽  
pp. 297-303 ◽  
Author(s):  
Fariba Motevasselian ◽  
Zahra Amiri ◽  
Nasim Chiniforush ◽  
Mansoreh Mirzaei ◽  
Van Thompson

Introduction: The aim of the present study was to investigate the effect of different surface treatments of a hybrid ceramic, Vita Enamic, on the micro-tensile bond strength (µ-TBS) to resin cement. Methods: Ten blocks (3×10×8 mm) were retrieved from the original blocks and divided into 5 groups according to the different surface treatments performed: Groups 1: 35% acid phosphoric for 60 seconds (PA); group 2: Sandblasting with 50 µm Al2 O3 particles for 10 seconds (SB); groups 3: 9.5% hydrofluoric acid for 60 seconds (HF), group 4: The Er:YAG laser (2 W, 10 Hz) (ER1), group 5: The Er:YAG laser (3 W, 10 Hz) (ER2). All treated surfaces were salinized and the blocks with similar surface treatments were bonded together using a dual-cured resin cement and light-cured. After 24-hour storage in water, the blocks were cut into beams (1 mm2 ). Half of the specimens in each group (n=16) were tested immediately and the rest were subjected to thermocycling between 5°C and 55°C for 6000 cycles before the µ-TBS test at a crosshead speed of 0.5 mm/min. The data were analyzed using two-way analysis of variance (ANOVA) and Tukey HSD tests and the significance level was set at 0.05. The failure mode was evaluated by using a stereomicroscope. Results: The µ-TBS was clearly influenced by surface treatment methods (P<0.001) and thermocycling significantly decreased the bond strength values in all groups (P=0.007). The highest value (66.07 MPa ± 11.3) was obtained for the HF groups with no thermocycling and the lowest values were observed in the laser groups with no significant difference among different irradiation parameters. Adhesive failure was mainly observed in the PA and SB groups while mixed failure was predominantly shown in the laser and HF groups. Conclusion: This study demonstrated that surface treatment of VE with HF and salinization could improve the bond strength to a dual-cured resin cement, and Er:YAG laser irradiation with the evaluated parameters did not promote the adhesion of the resin cement to VE.

2020 ◽  
Vol 11 (1) ◽  
pp. 45-49 ◽  
Author(s):  
Farkhondeh Raeisosadat ◽  
Rahab Ghoveizi ◽  
Solmaz Eskandarion ◽  
Elaheh Beyabanaki ◽  
Sara Tavakolizadeh

Introduction: This study aimed to investigate the effect of different surface treatments on the bond strength of resin cement to nickel-chrome (Ni-Cr) alloy. Methods: Forty disk-shaped specimens of Ni-Cr alloy were prepared and divided into 4 groups. In the first group, the specimens’ surface was sandblasted with 50 µ Al2 O3 particles. In the second group, the specimens were prepared with the Er:YAG laser. In the third group, the specimens were prepared using the Er:YAG laser after sandblasting. In the fourth group, the specimens’ surface was covered with a thin layer of MKZ metal primer after sandblasting. Then the cylinders of composite resin were bonded to the treated metal surfaces using Panavia F2.0 resin cement. All of the samples were subjected to 2000 thermal cycles. The shear bond strength was tested using a universal testing machine at the crosshead speed of 0.5 mm/min. The failure mode was also observed by a stereomicroscope. Data were analyzed using the one-way ANOVA and the Tukey HSD test at a significance level of 0.05. Results: The shear bond strength from the highest to the lowest were as follows: the Er:YAG laser group, the sandblast and MKZ primer combination group, the sandblast group, and the sandblast and Er:YAG laser combination group. The mean differences of shear bond strength between the Er:YAG laser group and the sandblast group (P=0.047) and also between the Er:YAG laser group and the sandblast and Er:YAG laser combination group (P=0.015) were statistically significant. Conclusion: Among the different surface treatments employed in this study, Er:YAG laser treatment increased the shear bond strength between the metal alloy and the resin cement (Pavnavia F2).


Author(s):  
Juliana Souza Carvalho ◽  
Marcelo Giannini ◽  
Andrea Nóbrega Cavalcanti

Purpose: This study evaluated in vitro the durability of the bond between resin cement and Y-TZP ceramic, testing the effect of different surface treatments and the previous application of an adhesive system over the ceramic. Methods: Forty Y-TZP ceramic plates were distributed into four experimental groups (n=10) according to the combination between surface treatment (air abrasion or Er:YAG laser irradiation) and adhesive system application (Scotchbond Multi Purpose – catalyst or Single Bond 2) in the plate previously to the use of the resin cement. After the surface treatment, resin cement cylinders were built using 0.8x1mm matrices (diameter x height). In each group, 5 specimens were tested for microshear after 24h, and other 5 specimens were tested after 6 months of water storage. Results: Regardless of the adhesive system or period, greater means were obtained in air abraded groups. No statistically significant difference between adhesive systems or periods. Conclusion: It could be concluded that the air abrasion improves bonding to T-TZP ceramic, regardless of the adhesive system used to coat zirconia ceramic surfaces.


2019 ◽  
Vol 10 (2) ◽  
pp. 120-127
Author(s):  
Sevki Cinar ◽  
Bike Altan ◽  
Gokhan Akgungor

Objective: To compare the bond strength of monolithic CAD-CAM materials to resin cement using different surface treatment methods. Materials and Methods: Lithium disilicate glass ceramic (IPS e-max CAD), zirconia-reinforced lithium silicate ceramic (Vita Suprinity), resin nanoceramic (Lava Ultimate), and hybrid ceramic (Vita Enamic) were used. Five groups of CAD-CAM blocks were treated as follows: control (C), HF etching (HF), HF etching + silanization (HF + S), sandblasting (SB), and sandblasting + silanization (SB + S). After surface treatments, SEM analyses were conducted. Specimens were cemented with self-adhesive resin cement (Theracem) and stored in distilled water at 37°C for 24 h. Shear bond strength (SBS) was measured, and failure types were categorized. Results were analyzed using two-way ANOVA and the post-hoc Tukey test. Results: Statistical analysis revealed significant differences between SBS values obtained for different surface treatments and CAD-CAM block types ( P < .001). Among the CAD-CAM materials, the highest SBS was reported in the HF + S group for Vita Enamic. Although IPS e.max CAD, Vita Suprinity, and Vita Enamic showed higher bond strength when treated with HF + S, Lava Ultimate has the highest bond strength value when treated with SB + S. Conclusions: The bond strength of CAD-CAM materials was influenced by surface treatment. Additionally, silanization significantly improved the bond strength of all materials except Lava Ultimate.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Heloísa A. B. Guimarães ◽  
Paula C. Cardoso ◽  
Rafael A. Decurcio ◽  
Lúcio J. E. Monteiro ◽  
Letícia N. de Almeida ◽  
...  

The aim of this study was to evaluate the shear bond strength of resin cement and lithium disilicate ceramic after various surface treatments of the ceramic. Sixty blocks of ceramic (IPS e.max Press, Ivoclar Vivadent) were obtained. After cleaning, they were placed in polyvinyl chloride tubes with acrylic resin. The blocks were divided into six groups (n=10) depending on surface treatment: H/S/A - 10% Hydrofluoric Acid + Silane + Adhesive, H/S -10% Hydrofluoric Acid + Silane, H/S/UA - 10% Hydrofluoric Acid + Silane + Universal Adhesive, H/UA- 10% Hydrofluoric Acid + Universal Adhesive, MBEP/A - Monobond Etch & Prime + Adhesive, and MBEP - Monobond Etch & Prime. The light-cured resin cement (Variolink Esthetic LC, Ivoclar Vivadent) was inserted in a mold placed over the treated area of the ceramics and photocured with an LED for 20 s to produce cylinders (3 mm x 3 mm). The samples were subjected to a shear bond strength test in a universal test machine (Instron 5965) by 0.5 mm/min. ANOVA and Tukey tests showed a statistically significant difference between groups (p<0.05). The results of the shear strength test were H/S/A (9.61±2.50)A, H/S (10.22±3.28)A, H/S/UA (7.39±2.02)ABC, H/UA (4.28±1.32)C, MBEP/A (9.01±1.97)AB, and MBEP (6.18±2.75)BC. The H/S group showed cohesive failures, and the H/UA group was the only one that presented adhesive failures. The conventional treatment with hydrofluoric acid and silane showed the best bond strength. The use of a new ceramic primer associated with adhesive bonding obtained similar results to conventional surface treatment, being a satisfactory alternative to replace the use of hydrofluoric acid.


2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


2019 ◽  
Vol 21 (5) ◽  
pp. 477-482
Author(s):  
Lucas Campagnaro Maciel ◽  
Amanda Pádua Proeza ◽  
Hélyda Coelho Guimarães Balbino ◽  
Marcela Moráo Corteletti ◽  
Ricardo Huver De Jesus ◽  
...  

AbstractThe evolution of dental materials and the improvement of ceramic systems stimulated the increased use of Y-TZP zirconia-based ceramics. Despite the excellent mechanical performance, this material has low adhesion potential. The objective of this work was to evaluate the surface treatments and resin cements influence on bond strength between Y-TZP zirconia and composite resin interface. A total of 60 blocks of Y-TZP zirconia (3x8x8mm) were prepared and divided into 3 groups according to the surface treatments: (C) control - extra fine diamond bur, (J) sandblasting with Al2O3 and (JP) sandblasting with Al2O3 + ceramic primer. Each group was subdivided into two groups according to type of resin cement used for cementing composite resin discs (2mm thick x 5mm diameter): self-adhesive and conventional (n=10). The samples were stored in distilled water for 24 hours at 37±1°C in a incubator and subsequently submitted to the shear bond test to determine the bond strength (RU). There was no significant difference in RU among the  surface treatments when using conventional resin cement. For the self-adhesive resin cement, Al2O3 blasting and Al2O3 + primer blasting increased the RU but did not present significant differences between them (p<0.05). Comparing the cements, it was observed that regardless of the surface treatment, the highest values were for the self-adhesive resin cement (p<0.05). Application of the primer after blasting with Al2O3 did not increase RU. Keywords: Dental Prosthesis. Ceramics. Dental cements. Shear Strength.  ResumoA evolução dos materiais odontológicos e o aprimoramento dos sistemas cerâmicos impulsionaram o aumento da utilização da cerâmica a base de zircônia Y-TZP. Apesar do excelente desempenho mecânico, este material apresenta baixo potencial de adesão. O objetivo deste trabalho foi avaliar a influência dos tratamentos de superfícies e dos cimentos resinosos na resistência de união entre a interface zircônia Y-TZP e resina composta. Foram confeccionados 60 blocos de zircônia Y-TZP (3x8x8 mm) e divididos em 03 grupos de acordo com os tratamentos de superfícies que receberam: (C) controle - ponta diamantada extrafina, (J) jateamento com Al2O3 e (JP) jateamento com Al2O3 + primer cerâmico. Cada grupo foi subdividido em dois novos grupos de acordo com tipo de cimento resinoso utilizado para cimentação de discos de resina composta (2mm de espessura x 5mm de diâmetro): autoadesivo e resinoso convencional (n=10). As amostras foram armazenadas em água destilada por 24 horas a 37±1°C em estufa e posteriormente submetidas ao teste de cisalhamento para averiguar a resistência de união (RU). Não houve diferença significativa na RU entre os tratamentos de superfície quando utilizado o cimento resinoso convencional. Para o cimento resinoso autoadesivo o jateamento com Al2O3 e o jateamento de Al2O3 + primer aumentaram a RU porém não apresentaram diferenças significativas entre si (p<0,05). Comparando os cimentos observou-se que, independente do tratamento de superfície, os maiores valores foram para o cimento resinoso autoadesivo (p<0,05). A aplicação do primer após o jateamento com Al2O3 não proporcionou aumento da RU. Palavras-chave: Prótese Dentária. Cerâmica. Cimentos Dentários. Resistência ao Cisalhamento.


2017 ◽  
Vol 19 (2) ◽  
pp. 61
Author(s):  
Luis A. Herrera-Ocampo DDS, MSD ◽  
Mauricio Montero-Aguilar DDS, MSc ◽  
Erika Alfaro-Mayorga DDS, MSD

The purpose of this study was to determine the effect of different surface treatments on the bond strength between resin cements and quartz fiber-reinforced resin posts. Materials and methods: Sixty quartz fiber-reinforced resin posts (DT Light-Post™, Bisco™) were randomly divided into 12 experimental groups (n=5), according to the resin cement used (Biscem™ or Duolink™) and the surface treatment: Alcohol (control group), silanized, primer, sandblasted, sandblasted + silanized or sandblasted + primer. Cylindrical resin specimens were obtained using nanohybrid resin. The posts were cemented to the resin discs and push-out tests were conducted. Data were analyzed with ANOVA and T test for averages comparison and the Tukey HSD test with a 95% level of significance. Results: Biscem™ cement generally showed higher bond strength when compared to Duolink™ Significant differences were found between the control group and the sandblasted + silane and sandblasted + primer groups when using Duolink™cement. With Biscem™ cement, no differences between groups or with the control group were found.. Conclusion: Surface treatments on quartz fiber-reinforced resin poles seem to have no significant effect on the bond strength to resin cements, except when using Duolink™ cement with sandblasted posts and using silane or primer.


Cerâmica ◽  
2015 ◽  
Vol 61 (358) ◽  
pp. 244-250 ◽  
Author(s):  
M. C. Loffredo ◽  
F. S. Hanashiro ◽  
W. Steagall Júnior ◽  
M. N. Youssef ◽  
W. C. de Souza-Zaroni

<p>Although several conventional surface treatments have been used on feldspathic ceramic, a few studies investigated the effects of the irradiation with Er: YAG laser using different parameters. The aim of this in vitro study was to evaluate the shear bond strength of a resin cement to feldspathic ceramic, after the application of different surface treatments, especially the irradiation with Er:YAG laser. Forty-two discs made of a feldspathic ceramic were divided into six groups (n = 7): G1: control group - 10% hydrofluoric acid (HF), G2: Air abrasion with Al2O3 + HF; G3: Er: YAG laser with 500 mJ/4Hz, G4: Er: YAG laser with 500 mJ/4Hz: + HF; G5: Er: YAG laser with 400 mJ/6Hz and G6: Er:YAG laser with 400 mJ/6Hz + HF. After this, all the specimens were treated with silane, and then a resin cement cylinder was built on the treated ceramic surface. After 24 h at 37 oC, specimens were submitted to the shear bond strenght test and stereoscopic evaluation to determine the type of failure. The mean bond strength values (MPa) obtained were: G1 - 17.55, G2 - 18.80, G3 - 21.80, G4 - 12.62, G5 - and 15.81 G6- 11.59. After performing the ANOVA and Tukey's test, it was concluded that the group irradiated with Er:YAG laser at 500mJ/4Hz performed similarly to the groups that received the conventional treatments, such as hydrofluoric acid etching and the combination of air abrasion plus hydrofluoric acid, and was higher than the other groups irradiated with Er:YAG laser.</p>


2016 ◽  
Vol 41 (2) ◽  
pp. 171-178 ◽  
Author(s):  
F Campos ◽  
CS Almeida ◽  
MP Rippe ◽  
RM de Melo ◽  
LF Valandro ◽  
...  

SUMMARY The aim of this study was to verify the effects of different surface treatments on the microtensile bond strength between resin cement and a hybrid ceramic. Thirty-two hybrid ceramic slices (8 × 10 × 3 mm) were produced and allocated among four groups according to the surface treatment: Cont = no treatment, HA = 10% hydrofluoric acid applied for 60 seconds, PA = 37% phosphoric acid applied for 60 seconds and CJ = air abrasion with silica particle coated alumina (Cojet Sand, 3M ESPE, 30 μm/2.8 bar). As a control group, eight blocks of feldspathic ceramic (8 × 10 × 3 mm) were etched by hydrofluoric acid for 60 seconds (VMII). After the surface treatments, the ceramic slices were silanized (except the Cont group) and adhesively cemented to composite resin blocks (8 × 10 × 3 mm ) with a load of 750 g (polymerized for 40 seconds each side). The cemented blocks were cut into beams (bonded surface area of ∼1 mm2). Half of the beams were aged (thermocycling of 5°C-55°C/6000 cycles + water storage at 37°C/60 days), and the other half were tested immediately after being cut. Data were analyzed by Kruskal-Wallis and Dunn tests (non-aged groups) and by one-way analysis of variance and Tukey test (aged groups; α=0.05%). The mode of failure was classified by stereomicroscopy. The surface treatment significantly affected the bond strength in each set of groups: non-aged (p=0.001) and aged (p=0.001). Before being aged, samples in the CJ, HA, and PA groups achieved the highest bond strength values. However, after being aged, only those in the HA group remained with the highest bond strength values. Adhesive failure was found most often. In conclusion, hydrofluoric acid etching should be used for surface conditioning of the studied hybrid ceramic.


Sign in / Sign up

Export Citation Format

Share Document