scholarly journals Comparison of stress in implant-supported monolithic zirconia fixed partial dentures between canine guidance and group function occlusal patterns: A finite element analysis

2019 ◽  
Vol 13 (2) ◽  
pp. 90-97 ◽  
Author(s):  
Mahmood Robati Anaraki ◽  
Ali Torab ◽  
Taymaz Mounesi Rad

Background. Monolithic zirconia is an emerging material for crowns and bridges. The possibility of full digital design has made it an attractive alternative material for implant-supported prostheses. A proper design is vital in the success of such a prosthesis like any other. This study, in the shortage of scientific evidence, has tried to assess the stress distribution of occlusal forces inside the implant-prosthesis system of a 3-unit bridge made of monolithic zirconia. Methods. A 3-unit monolithic zirconia bridge supported by two implant fixtures placed on the teeth #13 and #15 was digitalized. It was converted to a mesh of 59000 nodes and 34000 elements. Five types of occlusal forces (one as vertical centric, two at 15º and 30º simulating canine pattern of lateral movement, and two at 15º and 30º simulating group function pattern) were applied. The stress distribution among all the components of the implant-bridge system was assessed using Ansys Workbench 14 software and finite element analysis. Results. The maximum stress was between 286 and 546 MPa, which were found in either the fixture‒abutment screw area or in the upper part of the pontic connector between the canine and first premolar. The maximum pressure increased with an increase in the angle of occlusal force. Significantly higher stress was recorded in the group function occlusal pattern. Conclusion. Monolithic zirconia can be promising in designing bridges in the canine‒premolar area. However, proper design is necessary with more attention to the connectors and types of occlusal forces.

2018 ◽  
Vol 18 (05) ◽  
pp. 1850052
Author(s):  
BHASKAR KUMAR MADETI ◽  
CHALAMALASETTI SRINIVASA RAO ◽  
SUMA PRIYA GUGULOTHU

Free body diagram is drawn to compute the various forces and torques acting on hip joint. The FEA models for hip joint and acetabular cup are drawn with the help of CT Scan reports. The stress distribution and deformations are then obtained by using finite element analysis. Contact stresses, contact area radius and maximum pressure are obtained. Modeling of the hip joint and acetabular cup was done and stress distribution was also determined. Since the thigh bone is slender, it was analyzed both manually and through software for buckling. This analysis is performed in order to predict the failure of bones in the hip joint.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaodong He ◽  
Christopher-Denny Matte ◽  
Tsz-Ho Kwok

AbstractThe paper presents a novel manufacturing approach to fabricate origami based on 3D printing utilizing digital light processing. Specifically, we propose to leave part of the model uncured during the printing step, and then cure it in the post-processing step to set the shape in a folded configuration. While the cured regions in the first step try to regain their unfolded shape, the regions cured in the second step attempt to keep their folded shape. As a result, the final shape is obtained when both regions’ stresses reach equilibrium. Finite element analysis is performed in ANSYS to obtain the stress distribution on common hinge designs, demonstrating that the square-hinge has a lower maximum principal stress than elliptical and triangle hinges. Based on the square-hinge and rectangular cavity, two variables—the hinge width and the cavity height—are selected as principal variables to construct an empirical model with the final folding angle. In the end, experimental verification shows that the developed method is valid and reliable to realize the proposed deformation and 3D development of 2D hinges.


Sign in / Sign up

Export Citation Format

Share Document