scholarly journals PID Controller applied in a water distribution network supplied by pumping direct

2017 ◽  
Vol 26 ◽  
pp. 91-97
Author(s):  
Lais Régis Salvino ◽  
Kamilla Henrique Mendonça ◽  
Anne Caroline Linhares Monteiro ◽  
Heber Pimentel Gomes ◽  
Saulo De Tarso Marques Bezerra

Rapid growth in population over last few decades has resulted in changes of supply system consumption patterns. Such, require effort from companies in technical aspects; targeting need of strategies to improve operational efficiency. Management system, based on automated control, carries a strong mechanism to gauge these results. Aim of this paper is to present a comparative study of both hydraulic and electric parameters of an experimental automated network. Network behavior was analyzed under two conditions: without use of controller and with Proportional-Integral -Derivative (PID) controller. Results indicated efficiency of applied controller in different consumption scenarios. Dealing with energy efficiency, it was verified that, according to calculations related to specific energy consumption (SEC), reduction on electrical energy is notable with use of controller.

Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


2020 ◽  
Vol 20 (8) ◽  
pp. 2964-2970
Author(s):  
D. P. Ayadi ◽  
A. Rai ◽  
A. Pandey

Abstract The effective and efficient supply of drinking water resources are key to its long-term use and access. In recent decades, the population of Kathmandu Valley has exploded owing to several factors. The water supply system here has also undergone remarkable changes and efforts have been made to enhance its equitable distribution. The major effort, of course, is the Melamchi Water Supply Project (MWSP). As the project approaches completion of its first phase, we would like to point out several key issues for the water distribution system here and express our opinions on promoting equitable water distribution. For this we conducted a thorough literature review and found that improvement in the water distribution network and water tariff in the valley, along with promotion of alternative mitigation options, are the focal issues for promoting an equitable water distribution system in Kathmandu Valley.


Author(s):  
Marianna D'Ercole ◽  
Maurizio Righetti ◽  
Gema Raspati ◽  
Paolo Bertola ◽  
Rita Maria Ugarelli

The management of existing water distribution system (WDS) is challenged by ageing of infrastructure, population growth, increasing of urbanization, climate change impacts and environmental pollution. Therefore, there is a need for integrated solutions that support decision makers to plan today, while taking into account the effect of these factors in the mid and long term. The paper is part of a more comprehensive project, where advanced hydraulic analysis for WDS is coupled with a dynamic resources input-output analysis model. The proposed modeling solution can be used to optimize the performance of a water supply system while considering also the energy consumption and consequently the environmental impacts. Therefore, as a support tool in the management of a water supply system also in the intervention planning. Here a possible application is presented for rehabilitation/replacement planning while maximizing the network mechanical reliability and minimizing risk of unsupplied demand and pressure deficit, under given economic constraints.


2021 ◽  
Vol 238 ◽  
pp. 01005
Author(s):  
Lucrezia Manservigi ◽  
Mauro Venturini ◽  
Enzo Losi

A Pump as Turbine (PAT) is a renewable energy technology that can be a cost-effective and reliable alternative to hydraulic turbines in micro and small hydropower plants. In order to further favour PAT exploitation, a general procedure that allows the identification of the most suitable turbomachine to install is required. To this purpose, this paper develops a novel methodology aimed at selecting the best PAT that, among several alternatives, maximizes energy production. The methodology comprises two steps, which only require the knowledge of the best efficiency point of the considered pump and the hydraulic parameters of the site. The novel methodology is validated in this paper by calculating the electrical energy production of a simulated water distribution network coupled with several PATs, whose performance curves, both in direct and reverse modes, are taken from the literature. For the sake of generality, the considered turbomachines account for different geometrical characteristics, rotational speeds and operating ranges.


Author(s):  
Chiara Arrighi ◽  
Fabio Tarani ◽  
Enrico Vicario ◽  
Fabio Castelli

Abstract. Floods cause damage to people, buildings and infrastructures. Due to their usual location near rivers, water utilities are particularly exposed; in case of flood, the inundation of the facility can damage equipment and cause power outages. Such impact leads to costly repairs, disruptions of service, hazardous situations for personnel and public health advisories. In this work, we present an analysis of direct and indirect damages of a drinking water supply system considering the hazard of a riverine flooding as well as the exposure and vulnerability of the system components (i.e. pipes, junctions, lifting stations etc.). The method is based on the combination of a flood model and an EPANET-based piping network model implementing Pressure-Driven Demand, which is more appropriate when modeling water distribution networks with many off-line nodes. The two models are linked by a semi-automated GIS procedure. The evaluation of flood impact on the aqueduct network is carried out for flood scenarios with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analyzed in order to determine their residual functionality and simulate failure scenarios. Impact metrics are defined to measure service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence (Italy), serving approximately 385 000 inhabitants. Results show that for the worst failure scenario 420 km of pipeworks would require flushing and disinfection with an estimated cost of 21 Mio €, which is about 0.5 % of the direct flood losses evaluated for buildings and contents.


2017 ◽  
Vol 17 (12) ◽  
pp. 2109-2123 ◽  
Author(s):  
Chiara Arrighi ◽  
Fabio Tarani ◽  
Enrico Vicario ◽  
Fabio Castelli

Abstract. Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.


Author(s):  
V. Biriukov ◽  
S. Nagornyi ◽  
M. Chernosvitov ◽  
N. Gladyshev

Приведена информация о реконструкции насосных станций подкачки в г. Самаре. Описаны основные методы и средства ее поэтапной реализации. Для оптимизации работы водопроводных сетей и сооружений, выявления неучтенных потерь и расходов воды в системе, снижения расходов потребления сооружениями электроэнергии необходимо проводить комплекс мероприятий, в том числе с использованием программных решений, программ гидравлического моделирования работы системы водоснабжения. Приведены значения месячного и годового потребления электроэнергии и подачи воды для повысительных насосных станций, реконструированных в 2015 и 2018 годах. Определено снижение расходуемой электроэнергии на перекачку воды. Оценено изменение подачи воды повысительными насосными станциями после реконструкции. Сделано предположение о причинах возможного отсутствия снижения подачи воды при реконструкции насосных станций с учетом стабилизации давления на выходе.Information on the reconstruction of pumping stations in Samara is presented. The basic methods and means of its phased implementation are described. In order to optimize the operation of the water distribution network and structures, to identify unaccounted-for-losses and water flow rate in the system, to reduce the consumption of electricity by the facilities, a package of measures including the use of IT solutions, software for hydraulic modeling of the water supply system shall be carried out. The values of monthly and annual electricity consumption and water supply for booster pumping stations reconstructed in 2015 and 2018 are given. The decrease in energy consumption for pumping water is determined. The change in water supply by booster pumping stations after reconstruction is estimated. An assumption is made about the reasons for the possible absence of a decrease in water supply during the reconstruction of pumping stations taking into account the pressure stabilization at the outlet.


Sign in / Sign up

Export Citation Format

Share Document