Effect of Type of Task and Number of Inspectors on Performance of an Industrial Inspection-Type Task

Author(s):  
Harold Stanislaw

Two hundred forty subjects working alone and in pairs performed three different versions of a task similar to industrial inspection: a rating task and spatial and temporal two-alternative forced-choice (2AFC) tasks. Performance was worse on the rating task than on the 2AFC tasks, and the spatial and temporal 2AFC tasks were performed equally well. These results could signify that performance is impaired more by demands made on long-term memory than by demands made on perception and sensory memory, or that asking subjects to compare items is fundamentally different from, and easier than, asking subjects to judge items in absolute terms. Individual differences in performance were marked, but performance was inconsistent across different versions of the inspection task. When subjects worked in pairs, performance was comparable to that obtained by requiring items to pass two inspections by individual subjects. However, a single inspection by subject pairs required less time than two inspections by individual subjects. The practical implications of these findings are discussed.

2020 ◽  
Author(s):  
John J Shaw ◽  
Zhisen Urgolites ◽  
Padraic Monaghan

Visual long-term memory has a large and detailed storage capacity for individual scenes, objects, and actions. However, memory for combinations of actions and scenes is poorer, suggesting difficulty in binding this information together. Sleep can enhance declarative memory of information, but whether sleep can also boost memory for binding information and whether the effect is general across different types of information is not yet known. Experiments 1 to 3 tested effects of sleep on binding actions and scenes, and Experiments 4 and 5 tested binding of objects and scenes. Participants viewed composites and were tested 12-hours later after a delay consisting of sleep (9pm-9am) or wake (9am-9pm), on an alternative forced choice recognition task. For action-scene composites, memory was relatively poor with no significant effect of sleep. For object-scene composites sleep did improve memory. Sleep can promote binding in memory, depending on the type of information to be combined.


2017 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Ning An ◽  
Shi-Ying Sun ◽  
Xiao-Guang Zhao ◽  
Zeng-Guang Hou

Visual tracking is a challenging computer vision task due to the significant observation changes of the target. By contrast, the tracking task is relatively easy for humans. In this article, we propose a tracker inspired by the cognitive psychological memory mechanism, which decomposes the tracking task into sensory memory register, short-term memory tracker, and long-term memory tracker like humans. The sensory memory register captures information with three-dimensional perception; the short-term memory tracker builds the highly plastic observation model via memory rehearsal; the long-term memory tracker builds the highly stable observation model via memory encoding and retrieval. With the cooperative models, the tracker can easily handle various tracking scenarios. In addition, an appearance-shape learning method is proposed to update the two-dimensional appearance model and three-dimensional shape model appropriately. Extensive experimental results on a large-scale benchmark data set demonstrate that the proposed method outperforms the state-of-the-art two-dimensional and three-dimensional trackers in terms of efficiency, accuracy, and robustness.


2020 ◽  
Vol 16 ◽  
pp. 1-15
Author(s):  
Norwardatun Mohamed Razali

Colours are mentioned many times in the Holy Qur’an. Some are mentioned as colours in general, and some of them in specific; yellow, white, black, red, green and blue. Each colour has its special connotations in the Holy Qur’an and among these colours, yellow and red are considered as warm colours. This study aimed to find the significance of warm colours in the Holy Qur’an and its relationship to human psychology; focusing on memory performance. This research had used an inductive approach in terms of selecting Quranic verses; in which yellow and red colour were mentioned. These verses were then analysed by referring to the books of exegetical considerations in order to know the implications of these colours’ usage, as well as referring to psychology books and scientific articles. The research found that yellow and red colour in the Holy Qur’an mostly indicate attracting attention or pleasing viewers. Some examples included the yellow colour in resemblance to the colour of the cow, attention to decay and destruction such as yellow colour in the withering plants, and attention to resurrection like the red colour resembling scene of the Day of Resurrection. This indication in the Holy Qur’an is consistent with psychologists’ discovery; warm colours such as red and yellow are more effective and attractive in the process of transferring information from external to sensory memory, and thus to short-term and long-term memory.


2019 ◽  
Vol 28 (6) ◽  
pp. 607-613
Author(s):  
Kathleen B. McDermott ◽  
Christopher L. Zerr

Most research on long-term memory uses an experimental approach whereby participants are assigned to different conditions, and condition means are the measures of interest. This approach has demonstrated repeatedly that conditions that slow the rate of learning tend to improve later retention. A neglected question is whether aggregate findings at the level of the group (i.e., slower learning tends to improve retention) translate to the level of individual people. We identify a discrepancy whereby—across people—slower learning tends to coincide with poorer memory. The positive relation between learning rate (speed of learning) and retention (amount remembered after a delay) across people is referred to as learning efficiency. A more efficient learner can acquire information faster and remember more of it over time. We discuss potential characteristics of efficient learners and consider future directions for research.


Author(s):  
Stoo Sepp ◽  
Steven J. Howard ◽  
Sharon Tindall-Ford ◽  
Shirley Agostinho ◽  
Fred Paas

In 1956, Miller first reported on a capacity limitation in the amount of information the human brain can process, which was thought to be seven plus or minus two items. The system of memory used to process information for immediate use was coined “working memory” by Miller, Galanter, and Pribram in 1960. In 1968, Atkinson and Shiffrin proposed their multistore model of memory, which theorized that the memory system was separated into short-term memory, long-term memory, and the sensory register, the latter of which temporarily holds and forwards information from sensory inputs to short term-memory for processing. Baddeley and Hitch built upon the concept of multiple stores, leading to the development of the multicomponent model of working memory in 1974, which described two stores devoted to the processing of visuospatial and auditory information, both coordinated by a central executive system. Later, Cowan’s theorizing focused on attentional factors in the effortful and effortless activation and maintenance of information in working memory. In 1988, Cowan published his model—the scope and control of attention model. In contrast, since the early 2000s Engle has investigated working memory capacity through the lens of his individual differences model, which does not seek to quantify capacity in the same way as Miller or Cowan. Instead, this model describes working memory capacity as the interplay between primary memory (working memory), the control of attention, and secondary memory (long-term memory). This affords the opportunity to focus on individual differences in working memory capacity and extend theorizing beyond storage to the manipulation of complex information. These models and advancements have made significant contributions to understandings of learning and cognition, informing educational research and practice in particular. Emerging areas of inquiry include investigating use of gestures to support working memory processing, leveraging working memory measures as a means to target instructional strategies for individual learners, and working memory training. Given that working memory is still debated, and not yet fully understood, researchers continue to investigate its nature, its role in learning and development, and its implications for educational curricula, pedagogy, and practice.


2011 ◽  
Vol 23 (6) ◽  
pp. 768-779 ◽  
Author(s):  
Philip A. Allen ◽  
Kevin Kaut ◽  
Elsa Baena ◽  
Mei-Ching Lien ◽  
Eric Ruthruff

2017 ◽  
Author(s):  
Jason Samaha ◽  
Bradley R. Postle

AbstractAdaptive behavior depends on the ability to accurately introspect about one’s own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks has thus far been investigated with a focus on correlating metacognitive accuracy between perception and long-term memory paradigms. Here, we investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM), a cognitive function thought to be more intimately related to visual processing. Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgments, but not when the perceptual task was switched to require contrast judgments. In contrast to previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature.


2021 ◽  
pp. 1-18
Author(s):  
Qi Lin ◽  
Kwangsun Yoo ◽  
Xilin Shen ◽  
Todd R. Constable ◽  
Marvin M. Chun

Abstract What is the neural basis of individual differences in the ability to hold information in long-term memory (LTM)? Here, we first characterize two whole-brain functional connectivity networks based on fMRI data acquired during an n-back task that robustly predict individual differences in two important forms of LTM, recognition and recollection. We then focus on the recognition memory model and contrast it with a working memory model. Although functional connectivity during the n-back task also predicts working memory performance and the two networks have some shared components, they are also largely distinct from each other: The recognition memory model performance remains robust when we control for working memory, and vice versa. Functional connectivity only within regions traditionally associated with LTM formation, such as the medial temporal lobe and those that show univariate subsequent memory effect, have little predictive power for both forms of LTM. Interestingly, the interactions between these regions and other brain regions play a more substantial role in predicting recollection memory than recognition memory. These results demonstrate that individual differences in LTM are dependent on the configuration of a whole-brain functional network including but not limited to regions associated with LTM during encoding and that such a network is separable from what supports the retention of information in working memory.


Sign in / Sign up

Export Citation Format

Share Document