Threats to the archaeological sites of Egypt: a response to Fradley and Sheldrick

Antiquity ◽  
2017 ◽  
Vol 91 (357) ◽  
pp. 793-795 ◽  
Author(s):  
Sarah Parcak

We appreciate Michael Fradley and Nichole Sheldrick's response to our 2016 Antiquity paper. They claim that our results are “potentially misleading”, that there is an incorrect “emphasis on looting as the most significant problem facing Egypt's heritage” and that our prediction model is flawed. Our paper, however, clearly focuses on the major population centre of Egypt—the Nile Valley and Delta regions—where the bulk of the archaeological sites are located. This is a basic Egyptological fact.

2016 ◽  
Vol XXIV (1) ◽  
pp. 601-626 ◽  
Author(s):  
Marta Osypińska ◽  
Piotr Osypiński

The paper presents the results of an archaeological ground survey aimed to record prehistoric settlement landscape in chosen parts of the Southern Dongola Reach (Tergis, Affad and El-Nafab districts). The project fills in the gaps in earlier research on the right bank of the Nile. Numerous new sites were recorded, all reflecting a frequently occupied level of silts and sands originating in the former river valley aggradations. Prospection of locations recorded in 2003 and later demonstrated also the progressing destruction of archaeological sites on the fringes of modern settlement and the new road from Karima to Nawa.


Author(s):  
Douglas William Jones

Within the past 20 years, archaeobotanical research in the Eastern United States has documented an early agricultural complex before the dominance of the Mesoamerican domesticates (corn, beans, and squash) in late prehistoric and historic agricultural systems. This early agricultural complex consisted of domesticated plants such as Iva annua var.macrocarpa (Sumpweed or Marshelder), Hellanthus annuus (Sunflower) and Chenopodium berlandieri, (Goosefoot or Lasbsquarters), and heavily utilized plants such as Polygonum erectum (Erect Knotweed), Phalaris caroliniana (May grass), and Hordeum pusillum (Little Barley).Recent research involving the use of Scanning Electron Microscopy (SEM) specifically on Chenopodium has established diagnostic traits of wild and domesticated species seeds. This is important because carbonized or uncarbonized seeds are the most commonly recovered Chenopodium material from archaeological sites. The diagnostic seed traits assist archaeobotanists in identification of Chenopodium remains and provide a basis for evaluation of Chenopodium utilization in a culture's subsistence patterns. With the aid of SEM, an analysis of Chenopodium remains from three Late Prehistoric sites in Northwest Iowa (Blood Run [Oneota culture], Brewster [Mill Creek culture], and Chan-Ya-Ta [Mill Creek culture]) has been conducted to: 1) attempt seed identification to a species level, 2) evaluate the traits of the seeds for classification as either wild or domesticated, and 3) evaluate the role of Chenopodium utilization in both the Oneota and Mill Creek cultures.


Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


2005 ◽  
Vol 173 (4S) ◽  
pp. 427-427
Author(s):  
Sijo J. Parekattil ◽  
Udaya Kumar ◽  
Nicholas J. Hegarty ◽  
Clay Williams ◽  
Tara Allen ◽  
...  

Author(s):  
Vivek D. Bhise ◽  
Thomas F. Swigart ◽  
Eugene I. Farber
Keyword(s):  

2009 ◽  
Author(s):  
Christina Campbell ◽  
Eyitayo Onifade ◽  
William Davidson ◽  
Jodie Petersen

2019 ◽  
Author(s):  
Zool Hilmi Mohamed Ashari ◽  
Norzaini Azman ◽  
Mohamad Sattar Rasul

CICTP 2020 ◽  
2020 ◽  
Author(s):  
Qianqian Liang ◽  
Xiaodong Zhang ◽  
Jinliang Xu ◽  
Yang Zhang

Sign in / Sign up

Export Citation Format

Share Document