Implementation of Low-output-impedance Sinusoidal Oscillator and Its Modification for use in Filters

2021 ◽  
Vol 1 (8) ◽  
pp. 98-105
Author(s):  
Sanee PAWASARN
2015 ◽  
Vol 66 (5) ◽  
pp. 241-249 ◽  
Author(s):  
Chunhua Wang ◽  
Hairong Lin

AbstractIn this study, a new versatile active element, namely multifunction current differencing cascaded transconductance amplifier (MCDCTA), is proposed. This device which adopts a simple configuration enjoys the performances of low-voltage, low-input and high-output impedance, wide bandwidth etc. It simplifies the design of the current-mode analog signal processing circuit greatly, especially the design of high-order filter and oscillator circuits. Moreover, an example as a new current-mode multiphase sinusoidal oscillator (MSO) using MCDCTA is described in this paper. The proposed oscillator, which employs only one MCDCTA and minimum grounded passive elements, is easy to be realized. It can provide random n (n being odd or even) output current signals and these output currents are equally spaced in phase all at high output impedance terminals. Its oscillation condition and the oscillation frequency can be adjusted independently, linearly and electronically by controlling the bias currents of MCDCTA. The operation of the proposed oscillator has been testified through PSPICE simulation and experimental results.


2018 ◽  
Vol E101.B (9) ◽  
pp. 1940-1948 ◽  
Author(s):  
Nobukazu TSUKIJI ◽  
Yasunori KOBORI ◽  
Haruo KOBAYASHI

2020 ◽  
Vol 14 (8) ◽  
pp. 1173-1184
Author(s):  
İbrahim Ethem Saçu ◽  
Mustafa ALÇI

2014 ◽  
Vol 23 (08) ◽  
pp. 1450108 ◽  
Author(s):  
VANDANA NIRANJAN ◽  
ASHWANI KUMAR ◽  
SHAIL BALA JAIN

In this work, a new composite transistor cell using dynamic body bias technique is proposed. This cell is based on self cascode topology. The key attractive feature of the proposed cell is that body effect is utilized to realize asymmetric threshold voltage self cascode structure. The proposed cell has nearly four times higher output impedance than its conventional version. Dynamic body bias technique increases the intrinsic gain of the proposed cell by 11.17 dB. Analytical formulation for output impedance and intrinsic gain parameters of the proposed cell has been derived using small signal analysis. The proposed cell can operate at low power supply voltage of 1 V and consumes merely 43.1 nW. PSpice simulation results using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC) are included to prove the unique results. The proposed cell could constitute an efficient analog Very Large Scale Integration (VLSI) cell library in the design of high gain analog integrated circuits and is particularly interesting for biomedical and instrumentation applications requiring low-voltage low-power operation capability where the processing signal frequency is very low.


Author(s):  
Ron Ofir ◽  
Noa Zargari ◽  
Juri Belikov ◽  
Yoash Levron
Keyword(s):  

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1212
Author(s):  
Kazuma Koketsu ◽  
Toru Tanzawa

This paper describes a charge pump system for a flexible thermoelectric generator (TEG). Even though the TEG has high-output impedance, the system controls the input voltage to keep it higher than the minimum operating voltage by modulating the input impedance of the charge pump using two-phase operation with low- and high-input impedance modes. The average input impedance can be matched with the output impedance of the TEG. How the system can be designed is also described in detail. A design demonstration was performed for the TEG with 400 Ω. The fabricated system was also measured with a flexible-type TEG based on carbon nanotubes. Even with an output impedance of 1.4 kΩ, the system converted thermal energy into electric power of 30 μW at 2.5 V to the following sensor ICs.


Sign in / Sign up

Export Citation Format

Share Document