Freeze-Thaw Durability of Concrete With and Without Silica Fume in ASTM C 666 (Procedure A) Test Method: Internal Cracking Versus Scaling

1986 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
PA Wedding ◽  
M Pigeon ◽  
R Pleau ◽  
P-C Aitcin
2013 ◽  
Vol 20 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Peng Zhang ◽  
Qing-fu Li

AbstractIn this paper, the effect of silica fume on the workability and durability of concrete composites containing fly ash, including water impermeability, dry shrinkage property, carbonation resistance and freeze-thaw resistance, are presented. Four different silica fume contents (3%, 6%, 9% and 12%) were used. The results indicate that the addition of silica fume has greatly improved the durability of water impermeability, the carbonation resistance and the freeze-thaw resistance of the concrete composites containing fly ash. With the increase in silica fume content, the length of water permeability and the carbonation depth of the specimens decrease gradually, and the relative dynamic elastic modulus of the specimens has a tendency to increase. However, the addition of silica fume has a little adverse effect on the workability and dry shrinkage property of concrete composites containing fly ash. With the increase in silica fume content, both the slump and the slump flow decrease gradually, and the dry shrinkage strain increases gradually.


InterConf ◽  
2021 ◽  
pp. 418-426
Author(s):  
Thi Ngoc Quyen Nguyen

The biggest disadvantage of conventional concrete is brittle and hard, in addition, its durability is not high. The low durability of concrete is due to the presence of calcium hydroxide at the intersection of coarse aggregate particles and hard cement powder. The introduction of coconut fiber and polyvinyl alcohol (PVA) fibers into the concrete to improve the durability and flexibility of the concrete. In addition, the article also considers the effects of other additives such as rice husk ash, silica fume to study the performance of the structure as well as its durability when joining concrete mixes to create flexible concrete movable and more flexible than conventional concrete.


2019 ◽  
Author(s):  
Zhengyao Qu ◽  
Shuaiqi Guo ◽  
Christian C. M. Sproncken ◽  
Romà Surís-Valls ◽  
qingliang yu ◽  
...  

Frost weathering of porous materials caused by seasonal temperature changes is a major source of damage to the world’s infrastructure and cultural heritage. Here we investigate poly(vinyl alcohol) (PVA) addition as a means to enhance the freeze-thaw durability of concrete without compromising its structural or mechanical integrity. We evaluate the ice recrystallization inhibition activity of PVA in a cementitious environment and the impact of PVA on key structural and mechanical properties, such as cement hydration (products), microstructure, strength, as well as freeze‑thaw resistance. We find that a low amount of PVA significantly reduces the surface scaling of concrete and displays excellent ice recrystallization inhibition in the saturated Ca(OH)<sub>2 </sub>solution which has a similar pH value as cement pore solution, while it does not affect cement hydration, microstructure, nor its mechanical properties. These findings contribute to new insights on freeze-thaw damage mechanism and more importantly we disclose a new direction for the design of concrete with excellent freeze‑thaw resistance.


2015 ◽  
Vol 112 ◽  
pp. 112-117 ◽  
Author(s):  
Lei Jiang ◽  
Ditao Niu ◽  
Lidong Yuan ◽  
Qiannan Fei

1990 ◽  
Vol 17 (1) ◽  
pp. 102-112
Author(s):  
T. Rezansoff ◽  
D. Stott

The influence of CaCl2 or a chloride-based accelerating admixture on the freeze–thaw resistance of concrete was evaluated. Three air entrained mix designs were investigated using ASTM C666-84, Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing. All mix designs were similar, using cement contents of 340–357 kg/m3 of concrete, except for the addition of either 2% calcium chloride or 2% High Early Pozzolith, while no accelerating admixture was added to the control mix. The entire test program was repeated four times with water-to-cement ratio of 0.46 and three times with the ratio of 0.43. For the Pozzolith-accelerated concrete, half the samples were coated with boiled linseed oil in all seven series. For the control (unaccelerated) concrete, half the samples were coated with boiled linseed oil in one series for each water-to-cement ratio. Performance was monitored using the dynamic modulus of elasticity as obtained from transverse resonant frequency measurements. Weight loss of the specimens was also measured. Only the control samples (no accelerators) showed sufficient durability to satisfy the standard of maintaining at least 60% of the original dynamic modulus after 300 cycles of alternate freezing and thawing. Sealing with linseed oil showed inconsistent improvement in the durability in the various test series when defined in terms of the dynamic modulus; however, weight losses were the lowest of all categories and surface scaling was minimal. Key words: concrete, durability, freeze–thaw testing, calcium chloride, admixtures, sealants, air void system.


Masonry 2014 ◽  
2014 ◽  
pp. 197-217 ◽  
Author(s):  
Peter Mensinga ◽  
David De Rose ◽  
John Straube ◽  
Chris Schumacher
Keyword(s):  

2022 ◽  
Vol 321 ◽  
pp. 126371
Author(s):  
Ruijun Wang ◽  
Zhiyao Hu ◽  
Yang Li ◽  
Kai Wang ◽  
Hao Zhang

Sign in / Sign up

Export Citation Format

Share Document